How to Simplify the Laplace Equation in Spherical Coordinates?

  • Thread starter Thread starter physicss
  • Start date Start date
  • Tags Tags
    Laplace
AI Thread Summary
The discussion focuses on simplifying the Laplace equation in spherical coordinates using the function f(r,θ,φ)=Rl(r)Ylm(θ,φ). Participants emphasize the importance of understanding the Laplace operator's action on the function's radial and angular components. The concept of "separability" is highlighted as a key approach to solving the problem. Additionally, contributors request that the original poster demonstrate their attempts to solve the problem to facilitate more effective assistance. Overall, the conversation underscores the need for a clear problem statement and prior effort to engage in the discussion.
physicss
Messages
25
Reaction score
4
Homework Statement
Hello, how can I simplify ∆f(r,θ,φ) by using f(r,θ,φ)=Rl(r)Ylm(θ,φ)?
Relevant Equations
f(r,θ,φ)=Rl(r)Ylm(θ,φ)
I know what the Laplace operator is and I also looked up how f(r,θ,φ)=Rl(r)Ylm(θ,φ) is defined but I still could not solve the problem.
 
Physics news on Phys.org
physicss said:
Homework Statement: Hello, how can I simplify ∆f(r,θ,φ) by using f(r,θ,φ)=Rl(r)Ylm(θ,φ)?
Relevant Equations: f(r,θ,φ)=Rl(r)Ylm(θ,φ)

I know what the Laplace operator is and I also looked up how f(r,θ,φ)=Rl(r)Ylm(θ,φ) is defined but I still could not solve the problem.
What does the Laplace operator look like in spherical polar coordinates? If you then have this operator act on the following
f(r,θ,φ)=Rl(r)Ylm(θ,φ)
what happens when the "r" part of the operator hits the "Y" part of the function? And similarly for the angle parts acting on Rl(r)?

The buzzword is "separability." You can probably get quite a lot of help by googling this.
 
physicss said:
I know what the Laplace operator is and I also looked up how f(r,θ,φ)=Rl(r)Ylm(θ,φ) is defined but I still could not solve the problem.
Can you state the problem that you still cannot solve?
According to our rules, to receive help, you need to show some credible effort towards answering the question. How about showing us what you tried and where you got stuck? We need something to work from.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top