How to Solve a Challenging Integration Problem

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
Click For Summary
SUMMARY

The forum discussion focuses on solving a complex integral problem involving trigonometric functions. The integral in question is $$\int_{0}^{\dfrac{\pi}{2}} \dfrac{\cos^4 x+\sin x\cos^3x+\sin^2 x\cos^2 x+\sin^3x\cos x}{\sin^4 x+\cos^4 x+2\sin x\cos^3 x+2\sin^2 x\cos^2 x+2\sin^3 x\cos x}\,dx$$. Members MarkFL, greg1313, and lfdahl provided correct solutions, showcasing various techniques for integration. The discussion highlights the importance of understanding trigonometric identities and integration techniques to tackle such problems effectively.

PREREQUISITES
  • Understanding of trigonometric identities
  • Proficiency in integral calculus
  • Familiarity with definite integrals
  • Knowledge of integration techniques such as substitution and partial fractions
NEXT STEPS
  • Study advanced integration techniques in calculus
  • Explore trigonometric substitution methods for integrals
  • Learn about the properties of definite integrals
  • Investigate the use of computational tools like Wolfram Alpha for integral evaluation
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integration techniques will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$$\int_{0}^{\dfrac{\pi}{2}} \dfrac{\cos^4 x+\sin x\cos^3x+\sin^2 x\cos^2 x+\sin^3x\cos x}{\sin^4 x+\cos^4 x+2\sin x\cos^3 x+2\sin^2 x\cos^2 x+2\sin^3 x\cos x}\,dx$$


Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions::)

1. MarkFL
2. greg1313
3. lfdahl

Solution from MarkFL:
Let:

$$I= \int_{0}^{\frac{\pi}{2}} \frac{\cos^4(x)+\sin(x)\cos^3(x)+\sin^2(x)\cos^2(x)+\sin^3(x)\cos(x)}{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}\,dx\tag{1}$$

Using the identity:

$$\int_0^a f(x)\,dx=\int_0^a f(a-x)\,dx$$

Along with co-function identities for sine and cosine and a bit of rearranging, we find:

$$I= \int_{0}^{\frac{\pi}{2}} \frac{\sin^4(x)+\cos(x)\sin^3(x)+\cos^2(x)\sin^2(x)+\cos^3(x)\sin(x)}{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}\,dx\tag{2}$$

Adding (1) and (2), there results:

$$2I= \int_{0}^{\frac{\pi}{2}} \frac{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}\,dx=\int_0^{\frac{\pi}{2}}\,dx=\frac{\pi}{2}$$

Hence:

$$I=\frac{\pi}{4}$$

And so in conclusion, we have found:

$$\int_{0}^{\frac{\pi}{2}} \frac{\cos^4(x)+\sin(x)\cos^3(x)+\sin^2(x)\cos^2(x)+\sin^3(x)\cos(x)}{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}\,dx=\frac{\pi}{4}$$

Solution from greg1313:
$$\begin{align*}I&=\int_0^{\frac{\pi}{2}}\frac{\cos^4\!x+\sin\!x\cos^3\!x+\sin^2\!x\cos^2\!x+\sin^3\!x\cos\!x}{\sin^4\!x+\cos^4\!x+2\sin\!x\cos^3\!x+2\sin^2\!x\cos^2\!x+2\sin^3\!x\cos\!x}\,dx \\
&=\int_0^{\frac{\pi}{2}}\frac{1+\tan\!x+\tan^2\!x+\tan^3\!x}{\tan^4\!x+1+2\tan\!x+2\tan^2\!x+2\tan^3\!x}\,dx \\
&=\int_0^{\frac{\pi}{2}}\frac{\frac{\tan^4\!x-1}{\tan\!x-1}}{\tan\!x\left(\frac{\tan^4\!x-1}{\tan\!x-1}\right)+\frac{\tan^4\!x-1}{\tan\!x-1}}\,dx \\
&=\int_0^{\frac{\pi}{2}}\frac{\cos\!x}{\sin\!x+\cos\!x}\,dx\end{align*}$$

$$\frac{d}{dx}\left(\frac{\cos\!x}{\sin\!x+\cos\!x}\right)=-\frac{1}{(\sin\!x+\cos\!x)^2}$$

Observe that

$$\frac{\cos\!x}{\sin\!x+\cos\!x}$$

has rotational symmetry about the point $$\left(\frac{\pi}{4},\frac12\right)$$ over $$\left[0,\frac{\pi}{2}\right]$$

so we have

$$I=\int_0^{\frac{\pi}{2}}-\frac{2}{\pi}x+1\,dx=\left.\left(-\frac{1}{\pi}x^2+x\right)\right|_0^{\frac{\pi}{2}}=\frac{\pi}{4}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K