MHB How to Solve a Challenging Integration Problem

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
AI Thread Summary
The integral presented involves a complex expression combining sine and cosine functions raised to various powers. Members discussed different approaches to simplify the integral, focusing on trigonometric identities and substitutions. MarkFL and greg1313 provided correct solutions, demonstrating effective techniques for evaluating the integral. The discussion highlights the importance of recognizing patterns in trigonometric integrals to facilitate easier calculations. Overall, the thread emphasizes collaborative problem-solving in tackling challenging integration problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$$\int_{0}^{\dfrac{\pi}{2}} \dfrac{\cos^4 x+\sin x\cos^3x+\sin^2 x\cos^2 x+\sin^3x\cos x}{\sin^4 x+\cos^4 x+2\sin x\cos^3 x+2\sin^2 x\cos^2 x+2\sin^3 x\cos x}\,dx$$


Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions::)

1. MarkFL
2. greg1313
3. lfdahl

Solution from MarkFL:
Let:

$$I= \int_{0}^{\frac{\pi}{2}} \frac{\cos^4(x)+\sin(x)\cos^3(x)+\sin^2(x)\cos^2(x)+\sin^3(x)\cos(x)}{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}\,dx\tag{1}$$

Using the identity:

$$\int_0^a f(x)\,dx=\int_0^a f(a-x)\,dx$$

Along with co-function identities for sine and cosine and a bit of rearranging, we find:

$$I= \int_{0}^{\frac{\pi}{2}} \frac{\sin^4(x)+\cos(x)\sin^3(x)+\cos^2(x)\sin^2(x)+\cos^3(x)\sin(x)}{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}\,dx\tag{2}$$

Adding (1) and (2), there results:

$$2I= \int_{0}^{\frac{\pi}{2}} \frac{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}\,dx=\int_0^{\frac{\pi}{2}}\,dx=\frac{\pi}{2}$$

Hence:

$$I=\frac{\pi}{4}$$

And so in conclusion, we have found:

$$\int_{0}^{\frac{\pi}{2}} \frac{\cos^4(x)+\sin(x)\cos^3(x)+\sin^2(x)\cos^2(x)+\sin^3(x)\cos(x)}{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}\,dx=\frac{\pi}{4}$$

Solution from greg1313:
$$\begin{align*}I&=\int_0^{\frac{\pi}{2}}\frac{\cos^4\!x+\sin\!x\cos^3\!x+\sin^2\!x\cos^2\!x+\sin^3\!x\cos\!x}{\sin^4\!x+\cos^4\!x+2\sin\!x\cos^3\!x+2\sin^2\!x\cos^2\!x+2\sin^3\!x\cos\!x}\,dx \\
&=\int_0^{\frac{\pi}{2}}\frac{1+\tan\!x+\tan^2\!x+\tan^3\!x}{\tan^4\!x+1+2\tan\!x+2\tan^2\!x+2\tan^3\!x}\,dx \\
&=\int_0^{\frac{\pi}{2}}\frac{\frac{\tan^4\!x-1}{\tan\!x-1}}{\tan\!x\left(\frac{\tan^4\!x-1}{\tan\!x-1}\right)+\frac{\tan^4\!x-1}{\tan\!x-1}}\,dx \\
&=\int_0^{\frac{\pi}{2}}\frac{\cos\!x}{\sin\!x+\cos\!x}\,dx\end{align*}$$

$$\frac{d}{dx}\left(\frac{\cos\!x}{\sin\!x+\cos\!x}\right)=-\frac{1}{(\sin\!x+\cos\!x)^2}$$

Observe that

$$\frac{\cos\!x}{\sin\!x+\cos\!x}$$

has rotational symmetry about the point $$\left(\frac{\pi}{4},\frac12\right)$$ over $$\left[0,\frac{\pi}{2}\right]$$

so we have

$$I=\int_0^{\frac{\pi}{2}}-\frac{2}{\pi}x+1\,dx=\left.\left(-\frac{1}{\pi}x^2+x\right)\right|_0^{\frac{\pi}{2}}=\frac{\pi}{4}$$
 
Back
Top