MHB How to Solve the Integral of 1/sqrt(7-x^2) – A Step-by-Step Guide

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The integral of 1/sqrt(7-x^2) can be solved using the substitution x = sqrt(7)sin(u), leading to dx = sqrt(7)cos(u) du. This transforms the integral into I = ∫ du, which simplifies to u + C. The final result is I = arcsin(x/sqrt(7)) + C, confirming the solution is correct. The discussion highlights the importance of recognizing standard integrals and the substitution method in solving them.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
242.ws3.2
$\displaystyle
I=\int \frac{dx}{\sqrt{7-x^2}}
=\arcsin\left(\frac{\sqrt{7}x}{7}\right)+C$
I know this is a standard Integral but was given to solve it
$x=\sqrt{7}\sin\left({u}\right) \therefore dx=\sqrt{7}\cos\left({u}\right) \, du$
I proceeded but 😰
 
Physics news on Phys.org
karush said:
242.ws3.2
$\displaystyle
I=\int \frac{dx}{\sqrt{7-x^2}}
=\arcsin\left(\frac{\sqrt{7}x}{7}\right)+C$
I know this is a standard Integral but was given to solve it
$x=\sqrt{7}\sin\left({u}\right) \therefore dx=\sqrt{7}\cos\left({u}\right) \, du$
I proceeded but 😰

putting $x=\sqrt{7}\sin\left({u}\right) \therefore dx=\sqrt{7}\cos\left({u}\right) \, du$
we have
$\sqrt{7-x^2} = \sqrt{7}\cos (u)$
so integal becomes
$I=\int \frac{dx}{\sqrt{7-x^2}}= \int \frac{\sqrt{7}\cos\left({u}\right)}{\sqrt{7}\cos\left({u}\right)} \, du= \int du = u +C = \arcsin \frac{x}{\sqrt{7}} + C $
 
really, that's what I did but didn't think it was right... :cool:
 
Then you should have told us that you had a solution and shown how you got it in your first post.
 
$I=\int \frac{dx}{\sqrt{7-x^2}}= \int \frac{\sqrt{7}\cos\left({u}\right)}{\sqrt{7}\cos\left({u}\right)} \, du$
When I got to here I thought it was wrong.
But it was correct😎
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
Replies
4
Views
3K
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
4K