cianfa72
- 2,879
- 302
Sorry, I have some problem to grasp how you get the two non-trivial equations:
$$
\dot X^x = X^x \partial_x V^x + X^y \partial_y V^x = - \omega X^y, \qquad
\dot X^y = \omega X^x
$$
The LHS for each of the above equations should be ##(\mathcal L_V X)^a = [V,X]^a = \dot X^a - X^b \partial_b V^a = 0## evaluated for index ##a=x## and ##a=y## respectively. What about the respective RHS terms, namely ##- \omega X^y## and ##\omega X^x## ?
Thank you.
$$
\dot X^x = X^x \partial_x V^x + X^y \partial_y V^x = - \omega X^y, \qquad
\dot X^y = \omega X^x
$$
The LHS for each of the above equations should be ##(\mathcal L_V X)^a = [V,X]^a = \dot X^a - X^b \partial_b V^a = 0## evaluated for index ##a=x## and ##a=y## respectively. What about the respective RHS terms, namely ##- \omega X^y## and ##\omega X^x## ?
Thank you.
Yes, you are definitely right.Orodruin said:While this is true, it is not very satisfying as it makes it appear as if the Lie derivative depends on the connection. It does not.