How to turn partition sum into an integral?

LightPhoton
Messages
42
Reaction score
3
Homework Statement
How to evaluate partition sum in the limit where $$kT\gg\epsilon$$
Relevant Equations
$$Z_{tot}=\sum_0^\infty (2j+1)e^{-j(j+1)\epsilon/kT}$$
In, *An Introduction to Thermal Physics, page 235*, Schroder wants to evaluate the partition function

$$Z_{tot}=\sum_0^\infty (2j+1)e^{-j(j+1)\epsilon/kT}$$

in the limit that $kT\gg\epsilon$, thus he writes

$$Z_{tot}\approx\int_0^\infty (2j+1)e^{-j(j+1)\epsilon/kT}\,dj$$

But how is this correct? There was no factor of $j$ in the sum that could be replaced with $dj$. Also, it is good that $j$ is just a number, otherwise even the dimensions of $Z_{tot}$ would be wrong.
 
Physics news on Phys.org
LightPhoton said:
There was no factor of ##j## in the sum that could be replaced with ##dj##.
Yes, there is such a factor if you express "##1##" in terms of the summation index "##j##":$$Z_{tot}=\sum_{0}^{\infty}(2j+1)e^{-j(j+1)\epsilon/kT}\times1=\sum_{0}^{\infty}(2j+1)e^{-j(j+1)\epsilon/kT}\left((j+1)-j\right)\equiv\sum_{0}^{\infty}(2j+1)e^{-j(j+1)\epsilon/kT}\triangle j$$Now can you see how the integral approximates the sum?
 
  • Like
Likes LightPhoton
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top