How to turn partition sum into an integral?

Click For Summary
The discussion centers on evaluating the partition function Z_tot in the limit where kT is much greater than ε. The original sum is approximated by an integral, but concerns are raised about the absence of a factor of j that could be replaced with dj. It is clarified that by expressing "1" in terms of the summation index j, a factor can indeed be introduced, allowing the transition from summation to integration. This method demonstrates how the integral can approximate the sum effectively. The explanation resolves the initial confusion regarding the dimensionality and correctness of the approximation.
LightPhoton
Messages
42
Reaction score
3
Homework Statement
How to evaluate partition sum in the limit where $$kT\gg\epsilon$$
Relevant Equations
$$Z_{tot}=\sum_0^\infty (2j+1)e^{-j(j+1)\epsilon/kT}$$
In, *An Introduction to Thermal Physics, page 235*, Schroder wants to evaluate the partition function

$$Z_{tot}=\sum_0^\infty (2j+1)e^{-j(j+1)\epsilon/kT}$$

in the limit that $kT\gg\epsilon$, thus he writes

$$Z_{tot}\approx\int_0^\infty (2j+1)e^{-j(j+1)\epsilon/kT}\,dj$$

But how is this correct? There was no factor of $j$ in the sum that could be replaced with $dj$. Also, it is good that $j$ is just a number, otherwise even the dimensions of $Z_{tot}$ would be wrong.
 
Physics news on Phys.org
LightPhoton said:
There was no factor of ##j## in the sum that could be replaced with ##dj##.
Yes, there is such a factor if you express "##1##" in terms of the summation index "##j##":$$Z_{tot}=\sum_{0}^{\infty}(2j+1)e^{-j(j+1)\epsilon/kT}\times1=\sum_{0}^{\infty}(2j+1)e^{-j(j+1)\epsilon/kT}\left((j+1)-j\right)\equiv\sum_{0}^{\infty}(2j+1)e^{-j(j+1)\epsilon/kT}\triangle j$$Now can you see how the integral approximates the sum?
 
  • Like
Likes LightPhoton
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
429
  • · Replies 4 ·
Replies
4
Views
3K