How to Visualize a 4 vector (e.g. a velocity)?

AI Thread Summary
Velocity is a 4-vector comprising three spatial dimensions and one time dimension, with its spatial components directed along the three spatial axes. The concept of "inverse" direction in relation to the time component raises questions about visualization. To visualize a 4-vector, Minkowski diagrams can be utilized, particularly in (1+1)d, where they represent the normalized tangent to a particle's worldline. While (2+1)d Minkowski diagrams are possible, they are more complex and less intuitive. There is currently no effective method to represent (3+1)d diagrams visually.
Ashshahril
Messages
4
Reaction score
1
Homework Statement
How to Visualize a 4 vector(e.g. velocity)?
Relevant Equations
Velocity = distance/time
Velocity is a 4-vector which has 3 space dimensions and 1 time dimension. It's space parts will be directed at the 3 space directions and time parts will be directed at the time dimension (But it is inverse. So, will it point at the inverse direction?). How can someone Visualize it? How they arrange themselves in a 4d grid line?

Can you show all the 4-vectors at once?
 
Physics news on Phys.org
Ashshahril said:
Velocity is a 4-vector which has 3 space dimensions and 1 time dimension. It's space parts will be directed at the 3 space directions and time parts will be directed at the time dimension
A vector is just a magnitude and a direction. Don't think of it in terms of components - just think of it as an arrow at a point, pointing in some direction.
Ashshahril said:
But it is inverse.
I don't know what you mean by "inverse".
Ashshahril said:
How can someone Visualize it?
In (1+1)d, draw a Minkowski diagram. This is a Euclidean representation of a Minkowski plane, but that's as good as it gets. The four velocity is the Minkowski normalised tangent to the particle's worldline.

In (2+1)d you can also draw Minkowski diagrams but they're harder to understand.

I don't know any way to draw (3+1)d diagrams.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top