B Hydrodynamics Effects: Are They the Same?

AI Thread Summary
The discussion clarifies that the Coanda effect and ram pressure are distinct hydrodynamic phenomena. The Coanda effect involves fluid flow parallel to a surface, remaining attached due to viscosity and boundary layer velocity variations. In contrast, ram pressure arises from perpendicular flow creating pressure due to unbalanced kinetic energy. Observations of a hose nozzle being "sucked in" during an experiment relate to the Bernoulli effect, where fluid velocity beneath the nozzle exceeds that above it. Understanding these principles is crucial for accurately explaining observed fluid dynamics.
dom_quixote
Messages
50
Reaction score
9
Are these hydrodynamic effects the same?

 
Physics news on Phys.org
No, they are different effects.
Coanda effect; https://en.wikipedia.org/wiki/Coandă_effect
Ram pressure; https://en.wikipedia.org/wiki/Ram_pressure

In one, the flow is parallel to the surface and remains attached due to fluid viscosity and the velocity variation in the boundary layer.

In the other, the flow is perpendicular and provides a pressure due to unbalanced kinetic energy; KE = ½·m·v² .

Maybe you are seeing some other phenomenon. You need to explain the process you are referring to, or observing, in each case.
 
  • Like
Likes dom_quixote
Thanks Baluncore!

mang.JPG

I did a variation of the second experiment with a bucket. I did not film the experiment due to the difficulty of observing the phenomenon. However, the hose nozzle is also "sucked in" even when the water level rises. Would it be the same effect "RAM Pressure"?
 
dom_quixote said:
I did a variation of the second experiment with a bucket. I did not film the experiment due to the difficulty of observing the phenomenon. However, the hose nozzle is also "sucked in" even when the water level rises. Would it be the same effect "RAM Pressure"?
Then, for the second part of the video you were referring to the sucking effect between hose end and flat lid.
This happens because the Bernoulli effect, as the fluid velocity under the hose nozzle is greater than the one above.

Please, see:
https://en.wikipedia.org/wiki/Bernoulli's_principle

f0406.gif
 
  • Like
Likes dom_quixote
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...

Similar threads

Replies
2
Views
1K
Replies
6
Views
1K
Replies
22
Views
1K
Replies
2
Views
2K
Replies
5
Views
2K
Back
Top