MHB Hypothesis testing - Winning a game

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

A and B play 100 games of squash; A wins E times. B claims that both of them have the same probability of winning a game.
We consider that the games are independent.

(a) Formulate the null hypothesis and the alternative hypothesis.
(b) For which values of $E$ will the null hypothesis be rejected with $\alpha=1\%$ and for which with $\alpha=5\%$ ?Is at (a) the null hypothesis $H_0: \ p=\frac{1}{2}$ and the alterinative hypothesis $H_1: \ p\neq \frac{1}{2} $ ? Or do we call $p_A$ the probability of $A$ and $p_B$ the probability of $B$, and so the null hypothesis is $H_0: \ p_A=p_B$ and the alterinative hypothesis $H_1: \ p\_A\neq p_B $ ? (Wondering)
 
Physics news on Phys.org
Hey mathmari,

I would use the second way to frame this.

This link should be useful for comparing two samples of proportions.

[EDIT] - Not a two sample question, please read below.
 
Jameson said:
I would use the second way to frame this.

This link should be useful for comparing two samples of proportions.

So, we have the following:
$$H_0: \ p_A-p_B=0 \ \ \text{ and } \ \ H_1: \ p_A-p_B\neq 0$$

The test statistic is given by the formula $$Z=\frac{\hat{p}_A-\hat{p}_B}{\sqrt{\hat{p}(1-\hat{p})\left (\frac{1}{n_A}+\frac{1}{n_B}\right )}}$$

Is the size of the first population equal to the size of the second one, equal to $100$, i.e. $n_A=n_B=100$ ?

If yes, then we have that $\hat{p}_A=\frac{E}{100}$ and $\hat{p}_B=\frac{100-E}{100}$, or not?

Does it then hold that $\hat{p}=\hat{p}_A+\hat{p}_B=\frac{E}{100}+\frac{100-E}{100}=1$ ?

(Wondering)
 
mathmari said:
So, we have the following:
$$H_0: \ p_A-p_B=0 \ \ \text{ and } \ \ H_1: \ p_A-p_B\neq 0$$

The test statistic is given by the formula $$Z=\frac{\hat{p}_A-\hat{p}_B}{\sqrt{\hat{p}(1-\hat{p})\left (\frac{1}{n_A}+\frac{1}{n_B}\right )}}$$

Is the size of the first population equal to the size of the second one, equal to $100$, i.e. $n_A=n_B=100$ ?

If yes, then we have that $\hat{p}_A=\frac{E}{100}$ and $\hat{p}_B=\frac{100-E}{100}$, or not?

Does it then hold that $\hat{p}=\hat{p}_A+\hat{p}_B=\frac{E}{100}+\frac{100-E}{100}=1$ ?

Hey mathmari!

We only have 1 sample with $n=100$, so we can't do a 2-sample test of independent samples can we? (Wondering)
 
I like Serena said:
We only have 1 sample with $n=100$, so we can't do a 2-sample test of independent samples can we? (Wondering)

Oh yes. So we cannot apply the formula of the above link, can we? (Wondering)
 
mathmari said:
Oh yes. So we cannot apply the formula of the above link, can we?

Indeed. We need a different formula for a 1-sample proportion test.
It also means that we should have a hypothesis about a single proportion. (Thinking)
 
I like Serena said:
Indeed. We need a different formula for a 1-sample proportion test.
It also means that we should have a hypothesis about a single proportion. (Thinking)

So do we have the null hypothesis $H_0: p=\frac{1}{2}$ and the alternative hypothesis is $p\neq \frac{1}{2}$, or how do we formulate these hypotheses?

If we have these hypotheses, we get the following:

The test statistic is $$Z=\frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}=\frac{\frac{E}{100}-\frac{1}{2}}{\sqrt{\frac{\frac{1}{2}\left (1-\frac{1}{2}\right )}{n}}}=\frac{\frac{E}{100}-\frac{1}{2}}{\sqrt{\frac{1}{4n}}}=\frac{\frac{E-50}{100}}{\frac{1}{2\sqrt{n}}}=\frac{(E-50)\sqrt{n}}{50}$$

Now we have to compare this with $z_{1-\alpha/2}$, or not? (Wondering)
 
All correct.
And we can already fill in n=100. Can't we? (Wondering)
 
I like Serena said:
All correct.
And we can already fill in n=100. Can't we? (Wondering)

Oh yes, you're right! Thank you so much! (Mmm)
 
  • #10
mathmari said:
Oh yes. So we cannot apply the formula of the above link, can we? (Wondering)

Sorry mathmari! I quickly read the question and saw that you were formulating a two sample question but I didn't catch that it could be condensed into a one sample question. I'm glad ILS caught that and you solved the problem.
 
  • #11
Jameson said:
Sorry mathmari! I quickly read the question and saw that you were formulating a two sample question but I didn't catch that it could be condensed into a one sample question. I'm glad ILS caught that and you solved the problem.

No problem! Thank you! (Smile)
 

Similar threads

Replies
10
Views
2K
Replies
43
Views
4K
Replies
20
Views
2K
Replies
20
Views
3K
Replies
5
Views
2K
Replies
11
Views
2K
Back
Top