Hypothesis testing - Winning a game

Click For Summary

Discussion Overview

The discussion revolves around hypothesis testing in the context of a game of squash between two players, A and B. Participants explore how to formulate null and alternative hypotheses regarding the probabilities of winning, and they discuss the appropriate statistical methods for analyzing the outcomes of the games.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose that the null hypothesis can be framed as $H_0: p_A = p_B$ and the alternative hypothesis as $H_1: p_A \neq p_B$.
  • Others suggest an alternative formulation of the null hypothesis as $H_0: p = \frac{1}{2}$ and the alternative as $H_1: p \neq \frac{1}{2}$.
  • There is discussion about the appropriateness of using a two-sample test versus a one-sample test, with some participants noting that the scenario involves only one sample of 100 games.
  • Participants calculate the test statistic for a one-sample proportion test and express uncertainty about the correct formulation of hypotheses and the application of statistical formulas.
  • Some participants acknowledge the need to adjust their approach after realizing the nature of the problem.

Areas of Agreement / Disagreement

Participants express differing views on how to formulate the null and alternative hypotheses, and there is no consensus on the correct approach to the statistical analysis. The discussion remains unresolved regarding the best method to apply.

Contextual Notes

Participants highlight limitations in their understanding of hypothesis testing, particularly in distinguishing between one-sample and two-sample tests. There are unresolved questions about the correct application of statistical formulas based on the sample size and the nature of the hypotheses.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

A and B play 100 games of squash; A wins E times. B claims that both of them have the same probability of winning a game.
We consider that the games are independent.

(a) Formulate the null hypothesis and the alternative hypothesis.
(b) For which values of $E$ will the null hypothesis be rejected with $\alpha=1\%$ and for which with $\alpha=5\%$ ?Is at (a) the null hypothesis $H_0: \ p=\frac{1}{2}$ and the alterinative hypothesis $H_1: \ p\neq \frac{1}{2} $ ? Or do we call $p_A$ the probability of $A$ and $p_B$ the probability of $B$, and so the null hypothesis is $H_0: \ p_A=p_B$ and the alterinative hypothesis $H_1: \ p\_A\neq p_B $ ? (Wondering)
 
Physics news on Phys.org
Hey mathmari,

I would use the second way to frame this.

This link should be useful for comparing two samples of proportions.

[EDIT] - Not a two sample question, please read below.
 
Jameson said:
I would use the second way to frame this.

This link should be useful for comparing two samples of proportions.

So, we have the following:
$$H_0: \ p_A-p_B=0 \ \ \text{ and } \ \ H_1: \ p_A-p_B\neq 0$$

The test statistic is given by the formula $$Z=\frac{\hat{p}_A-\hat{p}_B}{\sqrt{\hat{p}(1-\hat{p})\left (\frac{1}{n_A}+\frac{1}{n_B}\right )}}$$

Is the size of the first population equal to the size of the second one, equal to $100$, i.e. $n_A=n_B=100$ ?

If yes, then we have that $\hat{p}_A=\frac{E}{100}$ and $\hat{p}_B=\frac{100-E}{100}$, or not?

Does it then hold that $\hat{p}=\hat{p}_A+\hat{p}_B=\frac{E}{100}+\frac{100-E}{100}=1$ ?

(Wondering)
 
mathmari said:
So, we have the following:
$$H_0: \ p_A-p_B=0 \ \ \text{ and } \ \ H_1: \ p_A-p_B\neq 0$$

The test statistic is given by the formula $$Z=\frac{\hat{p}_A-\hat{p}_B}{\sqrt{\hat{p}(1-\hat{p})\left (\frac{1}{n_A}+\frac{1}{n_B}\right )}}$$

Is the size of the first population equal to the size of the second one, equal to $100$, i.e. $n_A=n_B=100$ ?

If yes, then we have that $\hat{p}_A=\frac{E}{100}$ and $\hat{p}_B=\frac{100-E}{100}$, or not?

Does it then hold that $\hat{p}=\hat{p}_A+\hat{p}_B=\frac{E}{100}+\frac{100-E}{100}=1$ ?

Hey mathmari!

We only have 1 sample with $n=100$, so we can't do a 2-sample test of independent samples can we? (Wondering)
 
I like Serena said:
We only have 1 sample with $n=100$, so we can't do a 2-sample test of independent samples can we? (Wondering)

Oh yes. So we cannot apply the formula of the above link, can we? (Wondering)
 
mathmari said:
Oh yes. So we cannot apply the formula of the above link, can we?

Indeed. We need a different formula for a 1-sample proportion test.
It also means that we should have a hypothesis about a single proportion. (Thinking)
 
I like Serena said:
Indeed. We need a different formula for a 1-sample proportion test.
It also means that we should have a hypothesis about a single proportion. (Thinking)

So do we have the null hypothesis $H_0: p=\frac{1}{2}$ and the alternative hypothesis is $p\neq \frac{1}{2}$, or how do we formulate these hypotheses?

If we have these hypotheses, we get the following:

The test statistic is $$Z=\frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}=\frac{\frac{E}{100}-\frac{1}{2}}{\sqrt{\frac{\frac{1}{2}\left (1-\frac{1}{2}\right )}{n}}}=\frac{\frac{E}{100}-\frac{1}{2}}{\sqrt{\frac{1}{4n}}}=\frac{\frac{E-50}{100}}{\frac{1}{2\sqrt{n}}}=\frac{(E-50)\sqrt{n}}{50}$$

Now we have to compare this with $z_{1-\alpha/2}$, or not? (Wondering)
 
All correct.
And we can already fill in n=100. Can't we? (Wondering)
 
I like Serena said:
All correct.
And we can already fill in n=100. Can't we? (Wondering)

Oh yes, you're right! Thank you so much! (Mmm)
 
  • #10
mathmari said:
Oh yes. So we cannot apply the formula of the above link, can we? (Wondering)

Sorry mathmari! I quickly read the question and saw that you were formulating a two sample question but I didn't catch that it could be condensed into a one sample question. I'm glad ILS caught that and you solved the problem.
 
  • #11
Jameson said:
Sorry mathmari! I quickly read the question and saw that you were formulating a two sample question but I didn't catch that it could be condensed into a one sample question. I'm glad ILS caught that and you solved the problem.

No problem! Thank you! (Smile)
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
1K
  • · Replies 43 ·
2
Replies
43
Views
5K
Replies
20
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K