Ibach Luth - Solid State 1.11 (QM model for Van der Waals' equation )

DrPhysics
Messages
1
Reaction score
0
Homework Statement
Ibach Luth Solid State 1-11
Relevant Equations
Quantum Mechanical model for VanDerWalls equation
Hi Everyone, can you guys please help me with the exercise attached?

I knot that according to the book, van der Waals interaction is “charge fluctuations in atoms due to zero point motion.”

This is correct once you understand that they are not talking about zero point motion of nuclear coordinates, but of electron behavior.

I'm trying to complete the answers, but I'm stucked. Thanks a lot.
 

Attachments

  • QUESTÃO 1.png
    QUESTÃO 1.png
    63.3 KB · Views: 209
Physics news on Phys.org
To start to visualise what's going on, you have two protons (##+e##) separated by a distance ##R## and whose masses are so large compared to the two electrons (##-e##) that they can be assumed to remain stationary. The picture looks like:

1616780524881.png


The electrons are at ##x_1## and ##x_2## respectively relative to their corresponding protons; can you write down the total energy of the two oscillators? The energy of each oscillator will consist of the kinetic energy of the electron and the potential energy of the dipole. That will be ##\mathscr{H}_1##.

Note that, in working out ##\mathscr{H}_2##, the question assumes you're using Gaussian units.
 
Last edited by a moderator:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top