MHB *IBV5 The vectors u, v are given by u = 3i + 5j, v = i – 2j

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Vectors
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
The vectors $u, v$ are given by $u = 3i + 5j, v = i – 2j$
Find scalars $a, b$ such that $a(u + v) = 8i + (b – 2)j$

$(u+v)=4i+3j$
in order to get the $8i$ let $a=2$
then $2(4i+3j)=8i+6j$
in order to get $6j$ let $b=8$ then $(8-2)j=6j$
so $a=2$ and $b=8$

I am not sure of the precise definition of what scalar means here...at least with vectors
 
Mathematics news on Phys.org
vectors u,v are given by u=3i+5j,v=i–2j
Find scalars a,b such that a(u+v)=8i+(b–2)j

u + v = <4,3>

Then <4a,3a> = <8,(b-2)>

4a = 8

3a = b-2
 
karush said:
I am not sure of the precise definition of what scalar means here...at least with vectors
The definition is the same with everything; basically a number. Whether it's restricted to real or complex numbers is usually clear from context.
 
tkhunny said:
vectors u,v are given by u=3i+5j,v=i–2j
Find scalars a,b such that a(u+v)=8i+(b–2)j

u + v = <4,3>

Then <4a,3a> = <8,(b-2)>

4a = 8

3a = b-2

yes, that looks like a much better way to solve it. especially if it gets a lot more complicated.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
972
Replies
43
Views
3K
Replies
2
Views
1K
Replies
7
Views
2K
Replies
3
Views
16K
Replies
9
Views
2K
Back
Top