If lim a_n = L, then the geometric mean converges to L

Click For Summary
SUMMARY

The discussion centers on proving that if a sequence of positive numbers ##\{a_n\}## converges to a limit ##L##, then the geometric mean of the sequence also converges to ##L##. The proof utilizes the properties of limits, specifically bounding the geometric mean using the arithmetic mean inequality (AM-GM inequality) and the Cesàro mean. The argument establishes that both the limit superior and limit inferior of the geometric mean converge to ##L##, thereby confirming the limit of the geometric mean is indeed ##L##.

PREREQUISITES
  • Understanding of limits and convergence in sequences
  • Familiarity with the properties of geometric and arithmetic means
  • Knowledge of the AM-GM inequality
  • Basic concepts of epsilon-delta definitions in calculus
NEXT STEPS
  • Study the AM-GM inequality and its applications in proofs
  • Explore the Cesàro mean and its relationship to convergence
  • Learn about limit superior and limit inferior in sequences
  • Investigate alternative proofs of convergence using logarithmic properties
USEFUL FOR

Mathematics students, educators, and researchers interested in sequence convergence, particularly in the context of real analysis and inequalities.

Mr Davis 97
Messages
1,461
Reaction score
44

Homework Statement


Let ##\{a_n\}## be a sequence of positive numbers such that ##\lim_{n\to\infty} a_n = L##. Prove that $$\lim_{n\to\infty}(a_1\cdots a_n)^{1/n} = L$$

Homework Equations

The Attempt at a Solution


Let ##\epsilon > 0##. There exists ##N\in\mathbb{N}## such that if ##n\ge N## then ##L-\epsilon < a_n < L + \epsilon##.
Now, let ##b_n = (a_1\cdots a_n)^{1/n} ##. We can split this up based on the tail of ##\{a_n\}##: ##b_n = (a_1\cdots a_{N})^{1/n} (a_{N+1}\cdots a_{n})^{1/n} ##. We can bound ##(a_{N+1}\cdots a_{n})^{1/n}## since we have that ##L-\epsilon < a_n < L + \epsilon## for all ##n\ge N##: $$(L-\epsilon)^{1-N/n} < (a_{N+1}\cdots a_{n})^{1/n} < (L+\epsilon)^{1-N/n}.$$ Let ##C=a_1\cdots a_N##. If we multiply this inequality through by ##C^{1/n}## we find that $$C^{1/n}(L-\epsilon)^{1-N/n} < b_n < C^{1/n}(L+\epsilon)^{1-N/n}.$$ If we take the limsup of this inequality, we find that ##L \le \limsup_{n\to\infty} b_n \le L##. So ##\limsup_{n\to\infty}b_n = L##. Similarly, ##\liminf_{n\to\infty}b_n = L##. So ##\lim_{n\to\infty}b_n = L##.

Does this argument work? Could this be proved without the use of limit superior or inferior, i.e. directly with just the definition of convergence known?
 
Physics news on Phys.org
What are your relevant equations?

Do you have access to logarithms or exponential maps or ##\text{GM} \leq \text{AM}##?

The upper bound should be obvious by ##\text{GM} \leq \text{AM}## and the fact that if a limit of a sequence exists, then you get it from the Cesaro mean which is what the limiting value of ##\text{AM}## gives you. The lower bound is a bit trickier and requires a way of bounding the defect in ##\text{GM} \leq \text{AM}##.

Note that a product of non-negative terms is always non-negative, so the above immediately address the special case of ##L=0## (i.e. the GM is squeezed between 0 and 0). For all other cases you could divide by ##L## / WLOG assume that the limit is one, which should be nice to work with since it is the identity element for products. Again, relevant equations seem to be needed so we know what you know and don't.
 
Last edited:
Mr Davis 97 said:
Let ##\epsilon > 0.## There exists ##N\in\mathbb{N}## such that if ##n\ge N## then ##L-\epsilon < a_n < L + \epsilon.##

So from this point forward in the proof, we have picked a particular value of ##\epsilon## which will now remain fixed, and that gives rise to a particular ##N##.

But then I can't see what's happening with that limit. If I fix ##\epsilon## at 0.1 say, what is your argument that ##\limsup_{n \rightarrow \infty} {C^{1/n} (L - 0.1)(L - 0.1)^{-N/n}}## is L and not L - 0.1?

I think you're taking an additional limiting process of letting ##\epsilon## become arbitrarily small, repeating the limit as ##n \rightarrow \infty## for each choice of ##\epsilon## and in that case I believe a simple sandwich argument will work. But I think you have to make BOTH your limiting processes explicit.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K