I'm getting the wrong answer for the Indefinite Integral of: (x^2+2x)/(x+1)^2

Click For Summary

Homework Help Overview

The discussion revolves around the indefinite integral of the expression (x^2 + 2x) / (x + 1)^2. Participants are examining the integration process and comparing their results to a provided answer in a textbook.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore different methods of integration, including substitution and simplification. There are questions about the correctness of the integration process and whether the results are equivalent to the textbook answer. Some participants suggest verifying the results by differentiation.

Discussion Status

The discussion is active, with participants providing insights into potential errors in the integration process and discussing the nature of equivalent answers in indefinite integrals. There is no explicit consensus on the correct answer, but various interpretations and approaches are being explored.

Contextual Notes

Some participants note the importance of expressing the final answer in terms of the original variable after substitution. There are also comments regarding the clarity of the post format and the use of LaTeX for mathematical expressions.

azizlwl
Messages
1,066
Reaction score
10
Homework Statement
(x^2+2x)/(x+1)^2
Ans: x^2/(x+1)
Relevant Equations
Integral
((x+1)^2 -1)/(x+1)^2 dx
1-1/(x+1)^2 dx
Let u=x+1
1-1/u^2 du
u+1/u +c
(u^2+1)/u +c
Not as answer given in the book.
 
Physics news on Phys.org
azizlwl said:
Homework Statement: (x^2+2x)/(x+1)^2
Ans: x^2/(x+1)
Relevant Equations: Integral

((x+1)^2 -1)/(x+1)^2 dx
1-1/(x+1)^2 dx
Let u=x+1
1-1/u^2 du
u+1/u +c
(u^2+1)/u +c
Not as answer given in the book.
You may have an equivalent answer to the book. There are so many equivalent answers to one indefinite integrals. I recommend you to take the derivative of your answer to see if it is your integrand.
 
  • Like
Likes   Reactions: azizlwl and hutchphd
azizlwl said:
Homework Statement: (x^2+2x)/(x+1)^2
Ans: x^2/(x+1)
Relevant Equations: Integral

((x+1)^2 -1)/(x+1)^2 dx
1-1/(x+1)^2 dx
Let u=x+1
1-1/u^2 du
u+1/u +c
(u^2+1)/u +c
Not as answer given in the book.
1. You didn't "undo" your substitution. When you use this technique of integration, you should always rewrite your answer in terms of the original variable, not the substitution variable.
2. Your answer, reverting back to the original variable x, is ##x + 1 + \frac 1 {x + 1} + C##.
If I subtract the answer shown in the book from your answer, I get a constant. If two people work an indefinite integral by different methods, they can often come up with different-appearing solutions. If the two solutions differ only by a constant, then differentiating each solution will result in the given integrand.

One more thing: you've been a member here for over ten years. If you're going to post questions about mathematics, do yourself a favor and learn a bit about how to post using LaTeX. There's a link to our tutorial in the lower left corner of the input pane, "LaTeX Guide".
 
  • Like
Likes   Reactions: azizlwl
Hm, it's perhaps easier to first write
$$\frac{x^2+2x}{(x+1)^2}=\frac{(x+1)^2-1}{(x+1)^2}=1-\frac{1}{(x+1)^2},$$
which you can immediately integrate
$$\int \mathrm{d} x \frac{x^2+2x}{(x+1)^2}=x+\frac{1}{x+1}+C.$$
 

Similar threads

  • · Replies 105 ·
4
Replies
105
Views
8K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K