A Imperfectly Phase-Modulated Light / Residual Amplitude Modulation

AI Thread Summary
The discussion revolves around understanding the implications of an equation describing an imperfectly phase-modulated optical field affected by residual amplitude modulation (RAM) from an electro-optic phase modulator (EOM). Key components include the modulation indexes, alignment factors, and the crystallographic alignment of the EOM crystal, which influence the phase modulation. The main inquiry is how the combination of two phase-modulated signals with different modulation depths results in amplitude modulation. The use of phasor diagrams is suggested as a helpful visualization tool to comprehend the vectorial addition of amplitudes and the resulting changes in both amplitude and phase. This approach clarifies the relationship between phase modulation and the emergence of amplitude modulation in the context of the EOM's operation.
Twigg
Science Advisor
Gold Member
Messages
893
Reaction score
483
I'm trying to understand this paper and others on the same topic. I struggle conceptually with their first equation, which is an expression for an imperfectly phase modulated optical field from an electro-optic phase modulator (EOM) that is contaminated with a little bit of amplitude modulation (residual amplitude modulation, or RAM for short): $$E^{PM,RAM}_{inc}(x,y,t) = E(x,y) e^{i\omega t} [ae^{i(\delta_o sin \Omega t + \phi_o)} + be^{i(\delta_e sin \Omega t + \phi_e)} ]$$
where ##E(x,y)## is the TEM profile of the beam, ##\omega## is the beam's carrier frequency, ##a## and ##b## are alignment factors determined by the polarization angles (I think they're the amount of the beam that's aligned with the ordinary or extraordinary axes?), ##\delta_{o,e}## are the modulation indexes in the ordinary and extraordinary axes, ##\Omega## is the phase modulation frequency, and ##\phi_{o,e}## are phase offsets in the ordinary and extraordinary axes. The ordinary and extraordinary axes here are determined by the crystallographic alignment of the EOM crystal. I don't really have a clear picture in my head.

The big question for me is: how does this represent amplitude modulation? I see what looks like phase modulation on the fast and slow axes of the electro-optic crystal, OK. How does the linear combination of two phase modulated signals with different modulation depths turn into an amplitude modulation?

Any input here at all is appreciated. Sorry I couldn't be more use framing my question. Thanks!

Edit: It can be assumed that ##a \approx 1## and ##b << a##.
 
  • Like
Likes ergospherical
Science news on Phys.org
If we add two waves in a phasor diagram you will see that the ampitudes add vectorially and also that the resultant is altered in phase. If either wave changes in some way then both amplitude and phase of the resultant alter.
 
  • Like
Likes ergospherical and Twigg
Oh! Thanks for that suggestion @tech99. Thinking of the two modulated exponentials as phasors really helps! A lot easier to draw the resultant than to do the algebra here. And I catch your point about there being some amplitude modulation as the two modulated phasors move out of sync with each other.
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...
Back
Top