- #1

Robsta

- 88

- 0

## Homework Statement

Consider an elliptically polarized beam of light propagating along the z axis for which the E field components at a fixed position z are:

E

_{x}= E

_{0}cos(ωt) and E

_{y}= E

_{0}cos(ωt +φ)

Find the major and minor axes of the ellipse in terms of E

_{0}and φ and sketch the ellipse in the E

_{x}-E

_{y}plane.

## Homework Equations

## The Attempt at a Solution

I know that elliptically polarised light is formed by two waves with perpendicular polarisations and a phase shift of 90°. They have unequal amplitudes (if they had equal amplitudes, then it would be circularly polarized).

The major axis of the ellipse will be along the polarization axis of the wave with the bigger amplitude.

The minor axis will be along the polarization axis of the wave with the smaller amplitude.

So perhaps this is a maximisation problem?

Or maybe there's something to do with a cross product that I'm missing.

If we say that the major axis is theta from the x axis, then:

E

_{x+θ}= E

_{B}cos(ωt - θ)

E

_{y+θ}= E

_{s}cos(ωt - θ + φ)

Where E

_{s}stands for the smaller of the two amplitudes and E

_{B}stands for the bigger of the two amplitudes.

In this new frame, the phase difference must be 90 degrees, but doesn't that make φ = 90°? But if that were the case, then the unrotated frame would be circularly polarized. I'm very confused.