I have been playing around with calculus for a while and I wondered what would it be like to make some changes to the definition of derivatives.(adsbygoogle = window.adsbygoogle || []).push({});

I'd like to look at the original definition of derivatives in this way (everything is in lim Δx→0):

F(x+Δx) - F(x) = F'(x) * Δx

The Δx factor ensures that the RHS remains 0 when the LHS is 0.

And we get the familiar

(F(x+Δx) - F(x)) / Δx = F'(x)

I'd like to think of it as taking infinitesimal differences over some infinitesimal interval, and I wondered what would it look like if I were to take infinitesimal ratios instead. And it came out looking like this:

F(x+Δx) / F(x) = F*(x) ^ Δx

The Δx exponent ensures that the RHS remains 1 when the LHS is 1.

Then it comes out as

(F(x+Δx) / F(x)) ^ (1/Δx) = F*(x)

I've tried to use this on one sample function, F(x) = x^2; the results are F'(x) = 2x and F*(x)=e^(2/x)

If F'(x) means the rate of change of between two things (like velocity when F(time) is position), then what does F*(x) mean?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Implications of varying the definition of the derivative?

Tags:

**Physics Forums | Science Articles, Homework Help, Discussion**