Asphyxiated
- 263
- 0
I am hoping my addition of binomials is correct:
xy^{2} - 3x^{2}y +x =1
\frac {d(xy^{2}-3x^{2}y+x)}{dx} = \frac {d(1)}{dx}
(2yx\frac{dy}{dx}+y^{2}) - (3x^{2}\frac{dy}{dx}+6xy)+1 = 0
then I change the subtraction to addition and move the 1:
(2yx\frac{dy}{dx}+y^{2}) + (-3x^{2}\frac{dy}{dx}-6xy) = -1
2yx\frac{dy}{dx} - 3x^{2}\frac{dy}{dx} +y^{2}-6xy = -1
2yx\frac{dy}{dx} - 3x^{2}\frac{dy}{dx} +y^{2} = -1 + 6xy
2yx\frac{dy}{dx} - 3x^{2}\frac{dy}{dx} = -1 + 6xy - y^{2}
\frac{dy}{dx}(2yx - 3x^{2}) = -1 + 6xy - y^{2}
\frac{dy}{dx}= \frac {-1 + 6xy - y^{2}} {2yx - 3x^{2}}
xy^{2} - 3x^{2}y +x =1
\frac {d(xy^{2}-3x^{2}y+x)}{dx} = \frac {d(1)}{dx}
(2yx\frac{dy}{dx}+y^{2}) - (3x^{2}\frac{dy}{dx}+6xy)+1 = 0
then I change the subtraction to addition and move the 1:
(2yx\frac{dy}{dx}+y^{2}) + (-3x^{2}\frac{dy}{dx}-6xy) = -1
2yx\frac{dy}{dx} - 3x^{2}\frac{dy}{dx} +y^{2}-6xy = -1
2yx\frac{dy}{dx} - 3x^{2}\frac{dy}{dx} +y^{2} = -1 + 6xy
2yx\frac{dy}{dx} - 3x^{2}\frac{dy}{dx} = -1 + 6xy - y^{2}
\frac{dy}{dx}(2yx - 3x^{2}) = -1 + 6xy - y^{2}
\frac{dy}{dx}= \frac {-1 + 6xy - y^{2}} {2yx - 3x^{2}}
Last edited: