- #1
- 466
- 1
Homework Statement
Hello. I have some questions on this assignment, I'm wondering if I could get some help:
Determine whether the integral converges and, if so, evaluate the integral.
1) [tex] \int_{e}^{\infty} \frac{dx}{xlnx} [/tex]
2) [tex] \int_{1}^{4} \frac{dx}{x^2 - 4} [/tex]
3) [tex]\int_{e}^{\infty} \frac{dx}{(lnx)^2}[/tex]
4) [tex]\int_{2}^{\infty} \frac {dx}{x^2 + sinx} [/tex]
Homework Equations
The Attempt at a Solution
1) I integrate and get [tex] \lim_{b \to \infty} \int_{e}^{b} \frac{dx}{xlnx} = \lim_{ b \to \infty} [ \frac{ln(xlnx)}{lnx}]_{e}^{b} [/tex] ?
2) It has discontinuity at x = 2 and x = -2 so I evaluate [tex] \int_{1}^{2} \frac{dx}{x^2 - 4} \int_{2}^{4} \frac{dx}{x^2 - 4} [/tex]
I integrate and get [tex] \frac{-1}{4} \lim_{c \to \infty} \int_{1}^{c} \frac{1}{x+2} - \frac{1}{x-2} dx [/tex]
I sub in and get ln0?
3) Does this integrate into [tex] \lim_{b \to \infty} [\frac {-x}{lnx}]_{e}^{b} [/tex] ?
4) I don't know how to integrate this