It isn't purely a question of dimensionality. Geometry and topology matter too.
You can embed a section of a flat Euclidean plane in another plane of the same dimension - that's just drawing a square on a piece of paper.
You can't embed a curved surface in a flat surface of the same dimension - for example the curved surface of a bowl is 2d, but cannot be embedded on a piece of paper. You can create a map of the surface, but distances and/or angles will be distorted. And the surface of s sphere is even worse - you have to cut it and you can't actually draw a map without either leaving at least one point out or duplicating it.
All of these surfaces are so-called Riemannian surfaces, which have the property that if you zoom into a small area they "look Euclidean", which is why the Earth looks flat to us. And these surfaces can't be embedded in a same-dimensional plane, although they can be embedded in a higher dimensional space (for example, our 3d world).
Minkowski geometry is not Riemannian, it is pseudo-Riemannian. It never looks like a Euclidean plane however much you try, and that is a solid barrier to embedding it in a Euclidean space (of any dimension as far as I know, but certainly to embedding in a same dimensional Euclidean space). You can still draw a map in Euclidean space, but it doesn't preserve angles or distances because they are defined in a very different way in Minkowski spaces to Euclidean ones.