You don’t need more dimensions, you just need a different metric. The metric is used to determine the actual distance or interval along a path, in other words, the geometry. For simplicity, let’s just talk about two dimensional spaces.
A normal Euclidean space has the usual metric from the Pythagorean theorem: $$ds^2=dx^2+dy^2$$ Since this is the metric of a piece of paper, you can draw Euclidean figures on a piece of paper without distortion.
You can also change coordinates in the Euclidean plane to polar coordinates. In that case the metric becomes $$ds^2 = dr^2 + r^2 d\theta^2$$ Although it is not so obvious, you can also draw Euclidean figures without distortion on a piece of paper with polar coordinates. The metric has a different algebraic formula, but the geometry is the same. All that has changed are the coordinates we are using.
In contrast, a unit sphere is a curved 2 dimensional space that has the following metric $$ds^2= d\phi^2 + \sin^2(\phi) d\theta^2$$ As you can see, this metric is approximately the Euclidean metric near ##\phi=\pi/2## and approximately the polar metric near ##\phi=0##. However, because it is approximate this will have some distortion. You can map each point on a sphere to a point on a paper, but there will be some geometric distortion. Distances on the paper will not match distances on the sphere.
Finally, when we go to (2D) spacetime in natural units the metric becomes Minkowski’s $$ds^2=-dt^2+dx^2$$ This also cannot be represented exactly on a piece of paper. For instance, if ##dt=dx## then Minkowski’s ##ds^2=0##, which doesn’t happen for distinct points on a sheet of paper.
Nevertheless, just as a map can be a valid representation of the Earth despite the distorted geometry, so a spacetime diagram can be a valid representation of Minkowski spacetime despite the distorted geometry.
A spacetime diagram is not the same as spacetime, just as a map is not the same as the earth. But a spacetime diagram can be a valid and useful representation of spacetime, just as a map is a valid and useful representation of the earth.