Incompatibility between ideal gas equations of state

Click For Summary
The discussion centers around the derivation of the ideal gas equation relating pressure, density, and temperature. The user initially applies the ideal gas law and definitions of moles and density but becomes confused when the final equation simplifies to P/ρ = RT, questioning the role of molar mass. It is clarified that in the final equation, ρ represents molar density (n/V) rather than mass density (m/V). This distinction resolves the confusion regarding the application of molar mass in the context of the ideal gas law. Understanding this difference is crucial for correctly interpreting the equation of state for an ideal gas.
Portuga
Messages
56
Reaction score
6
Homework Statement
Derive the equation of state for an ideal gas that relates pressure, density, and temperature.
Relevant Equations
PV = nRT
To solve this problem I used two equations:
$$
PV=nRT,
$$
where ##P## is the pressure, ##V##the volume, ##R##the gas constant, ##T##for temperature and is##n##the number of moles, related to the
mass ##m## and molar mass ##M## by
$$
n=\frac{m}{M}.
$$
It will be also necessary consider the density ##\rho## as
$$
\rho=\frac{m}{V}.
$$

So,
\begin{align}
& PV=\frac{m}{M}RT\nonumber \\
\Rightarrow & \frac{P}{\frac{m}{V}}=\frac{RT}{M}\nonumber \\
\Rightarrow & \frac{P}{\rho}=\frac{RT}{M}.\nonumber
\end{align}
When I checked the answer, to my surprise I found
$$
\frac{P}{\rho}=RT.
$$
I am so confused because this is so simple and I have no idea about
what to do with the molar mass##M##to get the answer provided by the author.
 
Physics news on Phys.org
Portuga said:
Homework Statement:: Derive the equation of state for an ideal gas that relates pressure, density, and temperature.
Relevant Equations:: PV = nRT

To solve this problem I used two equations:
$$
PV=nRT,
$$
where ##P## is the pressure, ##V##the volume, ##R##the gas constant, ##T##for temperature and is##n##the number of moles, related to the
mass ##m## and molar mass ##M## by
$$
n=\frac{m}{M}.
$$
It will be also necessary consider the density ##\rho## as
$$
\rho=\frac{m}{V}.
$$

So,
\begin{align}
& PV=\frac{m}{M}RT\nonumber \\
\Rightarrow & \frac{P}{\frac{m}{V}}=\frac{RT}{M}\nonumber \\
\Rightarrow & \frac{P}{\rho}=\frac{RT}{M}.\nonumber
\end{align}
When I checked the answer, to my surprise I found
$$
\frac{P}{\rho}=RT.
$$
I am so confused because this is so simple and I have no idea about
what to do with the molar mass##M##to get the answer provided by the author.
In that final equation, ##\rho## is the molar density n/V, not the mass density m/V.
 
  • Love
  • Like
Likes MatinSAR and Portuga
Thank u very much!
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 27 ·
Replies
27
Views
678
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
848
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K