Help!(adsbygoogle = window.adsbygoogle || []).push({});

I am losing my mind over this problem (which is basically problem 2.6.5 in Arfken and Weber Mathematical Methods for Physicists, sixth edition). I am having difficulty using the tensor symmetric and antisymmetric relationships of the Riemann-Christoffel tensor to show that it reduces from 256 to 36 to 21 and then 20 independent components. My prof just acted like I should be able to do this in my sleep, but I am struggling. The only confirmation I can find was on Mathworld, where they offered that the number of independent components in n dimensions is given by C = (1/12)(n^2)(n^2 - 1), which is great but doesn't help me understand the steps involved.

Does anyone know of a site where this is worked out for dummies?! Or could someone perhaps help shed some light on this for me?

Thanks in advance for your help!

(I'm sorry if I put this thread under the wrong section. It was the one that made the most sense to me.)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Independent Components in Riemann-Christoffel Tensor

Loading...

Similar Threads for Independent Components Riemann |
---|

I Riemann tensor components |

I Defining the components of a metric |

I How to fill the stress energy tensor for multi body systems |

A Complex components of stress-energy tensor |

**Physics Forums | Science Articles, Homework Help, Discussion**