Inductance and Charge Redistribution

  • Thread starter Thread starter Ayesha02
  • Start date Start date
  • Tags Tags
    Charge Inductance
Click For Summary
SUMMARY

The discussion focuses on the application of Kirchhoff's loop rule in the context of mutual inductance and charge redistribution between two spheres, A and B. Participants clarify that the potential difference across the inductor can be expressed as -L di/dt, where L is the inductance. They derive equations for the charges on the spheres, Q_A(t) and Q_B(t), and discuss the relationship between current i and these charges. The conversation emphasizes the importance of correctly applying the loop law and understanding the dynamics of charge flow in the system.

PREREQUISITES
  • Understanding of Kirchhoff's loop rule
  • Familiarity with mutual inductance concepts
  • Knowledge of differential equations
  • Basic principles of electric charge and current
NEXT STEPS
  • Study the derivation of potential difference in inductive circuits
  • Learn about mutual inductance and its applications in electrical circuits
  • Explore solving ordinary differential equations (ODEs) in electrical engineering contexts
  • Investigate the relationship between charge, current, and time in capacitive and inductive systems
USEFUL FOR

Students and professionals in electrical engineering, physicists studying electromagnetic theory, and anyone interested in the principles of inductance and charge dynamics in circuits.

Ayesha02
Messages
49
Reaction score
5
Homework Statement
Two fixed identical metallic spheres A and B of radius R=50cm each are placed on a non-conducting plane at a very large distance from each other and they are connected by a coil of inductance L=9mH as shown in figure. One of the spheres (say A) is imparted an initial charge and the other is kept uncharged. The switch S is closed at t=0. After what minimum time t does the charge on the first sphere decrease to half of its initial value ?
Relevant Equations
Loop law: kq/r- L di/dt -kq/r=0
where L is inductance, q is initial charge on spheres.
I tried applying loop law but I am not really sure we don't really have a closed loop here.

I guess they're testing some concept here that I'm not very good at (Why do i keep coming back to mutual inductance for some reason:|)
Any help will be appreciated:)
 

Attachments

  • Charged Bodies.png
    Charged Bodies.png
    22.4 KB · Views: 346
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Kirchhoff's loop rule has to do with adding up changes in potential around a closed loop (so there are actually two oddities with the 'loop law' in your relevant equations: ##\frac{kq}{r}## is a potential and not a potential difference :wink:); though I guess you could consider a closed loop to infinity and back in which case your construction is nearly correct.

Instead, suppose a current ##i## is flowing from sphere A to sphere B through the inductor, and that the charges of the spheres at any given time ##t## are ##Q_A(t)## and ##Q_B(t)##. What is the potential difference across the inductor: can you find two different ways of writing this, and equate them? How do you relate ##i## to ##Q_A(t)## and/or ##Q_B(t)##? How do you relate ##Q_A(t)## and ##Q_B(t)## to the total charge in the system, in order to eliminate one of them?

A few things to think about there...
 
Last edited by a moderator:
etotheipi said:
Kirchhoff's loop rule is not going to help you here; that has to do with adding up changes in potential around a closed loop (so there are actually two problems with the 'loop law' in your relevant equations: ##\frac{kq}{r}## is a potential and not a potential difference :wink:).

Instead, suppose a current ##i## is flowing from sphere A to sphere B through the inductor, and that the charges of the spheres at any given time ##t## are ##Q_A(t)## and ##Q_B(t)##. What is the potential difference across the inductor: can you find two different ways of writing this, and equate them? How do you relate ##i## to ##Q_A(t)## and/or ##Q_B(t)##? How do you relate ##Q_A(t)## and ##Q_B(t)## to the total charge in the system, in order to eliminate one of them?

A few things to think about there...
So
Potential difference across the inductor is -L di/dt.
and (I'm not really sure of this-)
##Q_A(t)## should be ##Q_0## - ##i## t
##Q_B(t)## should be ##Q_0## + ##i## t

Is that right?
 
Ayesha02 said:
So
Potential difference across the inductor is -L di/dt.
and (I'm not really sure of this-)
##Q_A(t)## should be ##Q_0## - ##i## t
##Q_B(t)## should be ##Q_0## + ##i## t

Is that right?

A few things. ##Q_A(t) = Q_0 - it## would be correct if the current were constant, however we have no grounds to assume it here. Your second equation also assumes constant current, but ##Q_B(0) = 0## in the problem statement so even if the current were constant there should be no ##Q_0##.

You're right about the PD across the inductor; that is the change in potential in the direction of the current.

Think about it like this; if sphere ##A## has a charge of ##Q_A(t)## and a radius of ##r##, what is its potential? Likewise, what is the potential of sphere ##B##? What is the potential difference from sphere A to sphere B?
 
etotheipi said:
A few things. ##Q_A(t) = Q_0 - it## would be correct if the current were constant, however we have no grounds to assume it here. Your second equation also assumes constant current, but ##Q_B(0) = 0## in the problem statement so even if the current were constant there should be no ##Q_0##.

You're right about the PD across the inductor; that is the change in potential in the direction of the current.

Think about it like this; if sphere ##A## has a charge of ##Q_A(t)## and a radius of ##r##, what is its potential? Likewise, what is the potential of sphere ##B##? What is the potential difference from sphere A to sphere B?

Okay so if sphere ##A## has a charge of ##Q_A(t)## and a radius of ##r##, its potential should be k##Q_A(t)## /r ; likewise for B.
the potential difference between the two then becomes k##Q_A(t)## /r - k##Q_B(t)## /r .

is it okay?
 
Sure, so that gives you (being careful with the signs)
$$\frac{kQ_A(t)}{r} - \frac{kQ_B(t)}{r} = L\frac{di}{dt}$$ There are a few different things you could do; I would suggest eliminating either ##Q_A## or ##Q_B##, and rewriting ##\frac{di}{dt} = \frac{d}{dt}(i)## in terms of either ##Q_A## or ##Q_B## (depending on which one you have left).
 
Last edited by a moderator:
Yep, solving ODE time!
 
  • Love
Likes   Reactions: etotheipi
What an awful problem!
It's too tempting to neglect the mutual capacitance between A and B and consider only the self capacitance. However (https://en.wikipedia.org/wiki/Capacitance) points out the mutual capacitance equals the self capacitance. We end up with to capacitors "connected to infinity" and another between points A and B.
 
Ayesha02 said:
(Why do i keep coming back to mutual inductance for some reason:|)
There can only be mutual inductance when there are conceptually two (or more) inductors (discrete and/or tapped).
 
  • #10
rude man said:
There can only be mutual inductance when there are conceptually two (or more) inductors (discrete and/or tapped).

Ohh you true!
 
  • #11
etotheipi said:
Sure, so that gives you (being careful with the signs)
$$\frac{kQ_A(t)}{r} - \frac{kQ_B(t)}{r} = L\frac{di}{dt}$$ There are a few different things you could do; I would suggest eliminating either ##Q_A## or ##Q_B##, and rewriting ##\frac{di}{dt} = \frac{d}{dt}(i)## in terms of either ##Q_A## or ##Q_B## (depending on which one you have left).

So
I'm not sure I'm quite getting how to eliminate one of ##Q_A## or ##Q_B## there buddy:|
 
  • #12
Ayesha02 said:
So
I'm not sure I'm quite getting how to eliminate one of ##Q_A## or ##Q_B## there buddy:|
A current is defined as change in charge. ;)
 
  • #13
archaic said:
A current is defined as change in charge. ;)

Fine so i=d ##Q_A##/dt or d##Q_B##/dt. yet, how to eliminate?
 
  • #14
Ayesha02 said:
Fine so i=d ##Q_A##/dt or d##Q_B##/dt. yet, how to eliminate?
Well, what do you think of the sign of the left hand side of your equation?
 
  • #15
Moreover, where do you think the charge lost by A will go? If the initial charge of A is ##Q_0##, how can you relate it to that of B as time varies forward?
 
  • #16
archaic said:
Moreover, where do you think the charge lost by A will go? If the initial charge of A is ##Q_0##, how can you relate it to that of B as time varies forward?
If I am drinking from a bottle of water of initial volume ##V_0##, and the volume that I drank as a function of time is ##V(t)##, then what is the bottle's volume as time goes on?
 
  • #17
archaic said:
Moreover, where do you think the charge lost by A will go? If the initial charge of A is ##Q_0##, how can you relate it to that of B as time varies forward?

So the charge lost by A goes to B.
which means considering ##Q_0## as the initial charge given to A, ##Q_B## should eventually become ##Q_0## - ##Q_A##
so far so good?
 
  • Like
Likes   Reactions: archaic
  • #18
archaic said:
Well, what do you think of the sign of the left hand side of your equation?

Though i didnt quite get you on this..
 
  • #19
Ayesha02 said:
So the charge lost by A goes to B.
which means considering ##Q_0## as the initial charge given to A, ##Q_B## should eventually become ##Q_0## - ##Q_A##
so far so good?
Perfect. Gj.
Ayesha02 said:
Though i didnt quite get you on this..
The sign of the left hand side of your equation is equal to the sign of its right hand side, so you should choose the change in the current accordingly.
 
  • #20
Before A's charge becoming lower than the half of its initial charge, the sign of the difference is positive. This tells you that the derivative of the current is positive, thus the current should be growing. Feel free to add a minus aign if necessary depending on which charge you have chosen to eliminate.
 
  • #21
archaic said:
Perfect. Gj.

The sign of the left hand side of your equation is equal to the sign of its right hand side, so you should choose the change in the current accordingly.
Alright so what i can gather so far:

1. k ##Q_A##/r - k ##Q_B##/r =L di/dt
2. i= (##Q_0## - ##Q_A##) /t
3. i= (##Q_B##) /t

I still don't see how are we solving this:|
 
  • #22
You have found that
$$\frac{kQ_A(t)}{r} - \frac{kQ_B(t)}{r} = L\frac{di}{dt}$$
and have chosen ##Q_B(t)=Q_0-Q_A(t)##, which give you
$$\frac{kQ_A(t)}{r} - \frac{k(Q_0-Q_A(t))}{r} = L\frac{di}{dt}$$
You know that ##Q_A(t)-(Q_0-Q_A(t))=2Q_A(t)-Q_0\geq0##, thus for for ##Q_A(t)\geq\frac{Q_0}{2}=\frac{Q_A(0)}{2}##, we have ##\boxed{Li'(t)\geq0\implies i(t)=\frac{dQ}{dt}\text{ is growing.}}##
Since you have chosen to eliminate ##Q_B(t)##, you need to express ##i(t)## using the expression you have found for ##Q_B(t)##, and it needs to satisfy the condition above, and then solve the differential equation.
 
Last edited:
  • Like
Likes   Reactions: etotheipi
  • #23
archaic said:
You have found that
$$\frac{kQ_A(t)}{r} - \frac{kQ_B(t)}{r} = L\frac{di}{dt}$$
and have chosen ##Q_B(t)=Q_0-Q_A(t)##, which give you
$$\frac{kQ_A(t)}{r} - \frac{k(Q_0-Q_A(t))}{r} = L\frac{di}{dt}$$
You know that ##Q_A(t)-(Q_0-Q_A(t))=2Q_A(t)-Q_0\geq0##, thus for for ##Q_A(t)\geq\frac{Q_0}{2}=\frac{Q_A(0)}{2}##, we have ##Li'(t)\geq0##.
Since you have chosen to eliminate ##Q_B(t)##, you need to express ##i(t)## using the expression you have found for ##Q_B(t)##, and it needs to satisfy the condition above, and then solve the differential equation.

nope
I'm getting so confused rn.
 
  • #24
Ayesha02 said:
nope
I'm getting so confused rn.
Hm, can you please tell me where things are unclear?
 
  • #25
archaic said:
Hm, can you please tell me where things are unclear?

See
various thoughts crossing my mind-
1. I have four unknowns ( ##Q_0## ,##Q_A## ,##Q_B## and i ) and only 3 equations
2. Even if manage to solve the equations and find ##Q_A##(t)/ whatever, how will i get the time in which charge flow occurs

could you give me a birds eye view of the sum once again and then let's proceed with equation solving:)
 
  • #26
Ayesha02 said:
See
various thoughts crossing my mind-
1. I have four unknowns ( ##Q_0## ,##Q_A## ,##Q_B## and i ) and only 3 equations
2. Even if manage to solve the equations and find ##Q_A##(t)/ whatever, how will i get the time in which charge flow occurs

could you give me a birds eye view of the sum once again and then let's proceed with equation solving:)
At this point, ignore ##Q_0##. I think that, up until now, we are clear on$$\frac{kQ_A(t)}{r} - \frac{k(Q_0-Q_A(t))}{r} = L\frac{di}{dt}$$
We need to find the appropriate expression for ##i(t)##; either ##Q'_B(t)##, or ##Q'_A(t)##.
Before losing half of its initial charge, it should be clear that ##Q_A(t)\geq Q_B(t)##, since ##Q_B(t)## starts from being zero coulombs and grows by taking the charge lost from A's.
Thus
$$\frac{kQ_A(t)}{r} - \frac{k(Q_0-Q_A(t))}{r}\geq0$$
as long as the charge in A is greater than half of its initial value.
Now, we have$$\frac{kQ_A(t)}{r} - \frac{k(Q_0-Q_A(t))}{r} = L\frac{di}{dt}$$
or, in other terms, ##\alpha=\beta##. If ##\alpha>0##, then what can you infer about ##\beta##?
 
  • #27
If ββ is the derivative of some function, then what does its sign tell you about that function?
 
  • #28
archaic said:
If ##\beta## is the derivative of some function, then what does its sign tell you about that function?

Oh so I know that ##i## is an increasing function isn't it?

what next then?
 
  • #29
Ok, we know that ##i(t)## is growing, and since ##i(t)=Q'(t)##, then ##Q'(t)## should also be growing, or, in mathematics, ##Q''(t)\geq0##.
I haven't foreseen this. We definitely know that ##Q'_A\leq0## and that ##Q'_B\geq0##, but I don't see how we can say anything about their second derivatives without knowing the actual functions.
Since it seems that we have no idea, I suggest we choose ##Q=cQ_B(t)=c(Q_0-Q_A(t))##, where ##c## is either ##1## or ##-1##, and is to be determined later.
This should work as ##cQ''_B=-cQ''_A=ci'(t)## (substitute with the expression you have found for ##Q_B## to check).
 
  • #30
Ayesha02 said:
Ohh you true!
Actually, for a given coil of N turns, each turn has mutual inductance with every other turn, which is why coil inductance basically goes as the square of the number of turns. So you weren't completely off base after all! :smile:
 

Similar threads

Replies
20
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
890
Replies
6
Views
2K
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
1K
Replies
21
Views
2K