Ayesha02
- 49
- 5
archaic said:Ok, we know that ##i(t)## is growing, and since ##i(t)=Q'(t)##, then ##Q'(t)## should also be growing, or, in mathematics, ##Q''(t)\geq0##.
I haven't foreseen this. We definitely know that ##Q'_A\leq0## and that ##Q'_B\geq0##, but I don't see how we can say anything about their second derivatives without knowing the actual functions.
Since it seems that we have no idea, I suggest we choose ##Q=cQ_B(t)=c(Q_0-Q_A(t))##, where ##c## is either ##1## or ##-1##, and is to be determined later.
This should work as ##cQ''_B=-cQ''_A=ci'(t)## (substitute with the expression you have found for ##Q_B## to check).
oh man!
why do I need second derivative here now:(