Inductor Circuit Simulation: Understanding Current Rise and Voltage Output

AI Thread Summary
The discussion focuses on simulating an inductor circuit where the expected current rises from 0A to 500mA, with a voltage output of 5V. Participants clarify that the current should increase slowly, governed by the time constant of the circuit, calculated as L1/R1 = 10 microseconds. An equation for the inductor current is provided, confirming that the simulation results match the theoretical expectations. To observe the current rise accurately, it's suggested to zoom into the transient waveform and adjust simulation parameters, including pulse settings and stop time. Properly configuring the simulation will reveal the gradual current increase over approximately 50 microseconds.
PhysicsTest
Messages
246
Reaction score
26
TL;DR Summary
To understand the inductor circuit.
I am trying to understanding the inductor circuit. I have drawn the below circuit and try to simulate
1635602554158.png

The Inductor current comes to 500mA and Vout is 5V as per simulation. The current in inductor should slowly increase from 0A to 500mA but i cannot see that in the waveform. Is my understanding correct?
 
Engineering news on Phys.org
PhysicsTest said:
but i cannot see that in the waveform
Neither can we. What waveform ?
Do you have some equations to describe the behaviour of your circuit ?

##\ ##
 
  • Like
Likes PhysicsTest
I'm not sure about "slowly".
The time constant for this circuit is L1/R1 = 10uSec.
 
1635604571909.png

This is the output waveform i can get. Ok now i started writing the equation for the circuit.
##i(t) = \frac{V} {R} (1 - e^{\frac{-Rt} L})##
Substituting the values
##i(1) = 5/10*(1 - e^{-10^5}) ##
##i = 0.5A##. The answer is matching.
 
So zoom into the first few us of the transient waveform to see the LR time constant...
 
The DC analysis sets up 500 mA before the run.
You must use; V1 pulse; initial=0V; Von=5V; Tdelay=5usec;
and .TRAN stop time = 100 usec.
Then see the current rise over about 50 usec.
Inductor.png
 
Last edited:
  • Like
  • Informative
Likes BvU, PhysicsTest and berkeman
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top