Infinite Series Convergence using Comparison Test

titasB
Messages
14
Reaction score
2

Homework Statement



Determine whether the series is converging or diverging

Homework Equations




∑ 1 / (3n +cos2(n))
n=1

The Attempt at a Solution



I used The Comparison Test, I'm just not sure I'm right. Here's what I've got:

The dominant term in the denominator is is 3n and
cos2(n) alternates between 0 and 1

so,

1 / (3n +cos2(n)) < 1 / 3n

which is convergent geometric series, since | r | = 1/3 < 1

And so, 1 / (3n +cos2(n)) is convergent according to the Comparison Test
 
Physics news on Phys.org
looks ok to me. actually maybe you should change < to ≤ for when cos2 is zero
 
Last edited:
  • Like
Likes titasB
Thanks. Wasn't sure about the cos2(n) part
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top