Infinite Series familiar function

Click For Summary
The discussion revolves around finding the power series representation of a function f(x) with specific properties, including f(0) = 1 and a defined nth derivative. Participants are attempting to derive the first four non-zero terms of the power series and express f(x) as a familiar function. There is confusion regarding the correct formulation of the power series and the interpretation of "familiar function." Additionally, the discussion touches on using the LaGrange Remainder to determine how many terms are needed to approximate f(0.2) with a specified error margin. Clarification on these points is sought to advance the problem-solving process.
carlodelmundo
Messages
133
Reaction score
0

Homework Statement



Let f(x) be a function with the following properties.

i. f(0) = 1

ii. For all integers n \geq 0, the 0, the nth derivative, f (n)(x) = (-1)nanf(x), where a > 0 and a \neq 1.

a.) Write the first four non-zero terms of the power series of f(x) centered at zero, in terms of a.

b.) Write f(x) as a familiar function in terms of a.

c.) How many terms of the power series are necessary to approximate f(0.2) with an error less than 0.001 with a = 2?

The Attempt at a Solution



a.) Here is my work for:
\sum^{\infty}_{n=0} (-1)nanf(x) = (-1)0a0f(x) + (-1)af(x) + (-1)2a2f(x) + (-1)3a3f(x)

= f(x) - af(x) + a2f(x) - a3f(x).

For a --- is this correct? I thought the series itself was (-1)nanf(x) given from the above but I think it may be wrong?

for b.)... what does it mean write f(x) as a familiar functions in terms of a? I don't get how we can be "familiar" with this function... I'm guessing it has to do something with the initial condition, f(0) = 1? but what? hints please.

for c.) c is contingent on my answer on b... but I do know we're using the LaGrange Remainder.

Thanks for the help
 
Physics news on Phys.org
Hint: ekx is a familiar function
 
carlodelmundo said:

Homework Statement



Let f(x) be a function with the following properties.

i. f(0) = 1

ii. For all integers n \geq 0, the 0, the nth derivative, f (n)(x) = (-1)nanf(x), where a > 0 and a \neq 1.

a.) Write the first four non-zero terms of the power series of f(x) centered at zero, in terms of a.

b.) Write f(x) as a familiar function in terms of a.

c.) How many terms of the power series are necessary to approximate f(0.2) with an error less than 0.001 with a = 2?

The Attempt at a Solution



a.) Here is my work for:
\sum^{\infty}_{n=0} (-1)nanf(x) = (-1)0a0f(x) + (-1)af(x) + (-1)2a2f(x) + (-1)3a3f(x)

= f(x) - af(x) + a2f(x) - a3f(x).
That's not even a power series! The power series for f(x), about 0 (the MacLaurin series) is f(0)+ f'(0)x+ f"(0)/2! x^2+ ...+ f(n)(0)/n! x^n+ ...
It should be easy to determine the derivatives of f evaluated at 0.

For a --- is this correct? I thought the series itself was (-1)nanf(x) given from the above but I think it may be wrong?

for b.)... what does it mean write f(x) as a familiar functions in terms of a? I don't get how we can be "familiar" with this function... I'm guessing it has to do something with the initial condition, f(0) = 1? but what? hints please.

for c.) c is contingent on my answer on b... but I do know we're using the LaGrange Remainder.

Thanks for the help
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
26
Views
2K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K