Finding the Constants in a Second Order Differential Equation

Click For Summary
To solve the second-order differential equation d2y/dx2 = 2 - 6x with initial conditions y(0) = -3 and y'(0) = 4, it is essential to integrate twice and account for two integration constants. The first integration yields y' = 2x - 3x^2 + C, and the second integration gives y = x^2 - x^3 + Cx + D. The constants C and D can be determined using the initial conditions provided. Specifically, y(0) and y'(0) will allow for solving the system of equations to find the values of C and D. Understanding the need for two constants is crucial when working with second-order differential equations.
alyston
Messages
3
Reaction score
0

Homework Statement



d2y/dx2 = 2-6x

Given: y(0)=-3 and y'(0)=4


Homework Equations



None that I know of.

The Attempt at a Solution



I know that for a single order derivative you would just find the integral, set y=1 and x=0. But I'm confused because here we're given two conditions, instead of just one. And I don't know how to do this type of problem with a second order derivative. But I know that:

The second integral of 2-6x is x2-x3. So,
y=x2-x3 + C
1= C

I also know that the first integral is 2x-3x2

But where does y'(0)=4 come into place? Do I need two equations here?
Mainly, I need to find the value of C, which stands for Constant.

Thanks! I'd really appreciate any help.
 
Physics news on Phys.org
If you integrate twice, each time you have to introduce an integration constant. That's why you need two additional conditions to find these constants.

So the antiderivative of the antiderivative of 2-6x is

a) x^2 - x^3.
b) x^2 - x^3 + C
c) x^2 - x^3 + Cx +D
d) x^2 - x^3 + C + D
e) all 4 of the above
f) none of the above 5 options
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K