Input impedance of a "Ladder" transmission line

Click For Summary
SUMMARY

The discussion centers on the input impedance of a ladder transmission line, which consists of alternating segments with characteristic impedances \(Z_1\) and \(Z_2\). The input impedance is defined by the equation \(i Z_{in}^2(Z_1+Z_2) + Z_{in} (Z_1^2-Z_2^2) - iZ_1Z_2(Z_1+Z_2) = 0\). Participants explore methods to prove this relationship, including the use of ABCD matrices and analyzing transmitted and reflected waves. A lack of familiarity with network theory is noted, indicating that a solid understanding of 2-terminal networks is essential for tackling this problem.

PREREQUISITES
  • Understanding of transmission lines and their characteristics
  • Familiarity with ABCD matrices in circuit analysis
  • Knowledge of wave propagation and reflection in electrical engineering
  • Basic grasp of complex impedance and its applications
NEXT STEPS
  • Study the derivation and application of ABCD matrices in transmission line theory
  • Learn about the characteristics and behavior of ladder transmission lines
  • Explore the concepts of transmitted and reflected waves in electrical circuits
  • Investigate the mathematical foundations of complex impedance and its significance
USEFUL FOR

Electrical engineering students, circuit designers, and professionals working with transmission lines and network analysis will benefit from this discussion.

Marcus95
Messages
50
Reaction score
2

Homework Statement


My electronics&physics lecture notes contain the following side note:
___
"A ladder transmission line comprises an alternating sequence of segments of two different transmission lines both of length $l$ with characteristic impedance $Z1$ and $Z2$. If the line is constructed such that its input impedance remains unchanged when another pair of $Z1$ and $Z2$ segments is added, the input impedance of the ladder transmission line obeys the following relationship:
$$i Z_{in}^2(Z_1+Z_2) + Z_{in} (Z_1^2-Z_2^2) - iZ_1Z_2(Z_1+Z_2) = 0. $$
"__

Homework Equations


$$ Z_{in} = Z_0 \frac{Z \cos kl + i Z_0 \sin kl}{Z_0 \cos kl + i Z \sin kl} . $$
$$V = IR$$

The Attempt at a Solution


Now to me this formula appears to be very much pulled out of thin air, so I have naturally attempted to prove it. First I considered using

$$ Z_{in} = Z_0 \frac{Z \cos kl + i Z_0 \sin kl}{Z_0 \cos kl + i Z \sin kl} . $$

but then realized that this formula is derived for when we have a single reflecting boundary only, so might not be applicable. The second approach which could be taken would be to write down the equations for both transmitted and reflected waves in all regions and hence find the input impedance for the case of 2 segments and for 4. However, this would require solving 8 simultaneous equations...

Anybody who knows how this formula is proved in a nicer way?
 
Physics news on Phys.org
Right now I can only suggest an approach, may look at it in more detail later:
There is some ambiguity as to whether the total line is of finite or infinite length; this should be resolved; but in either case:

Determine the ABCD matrix for line 1 of length l.
Same for line 2.
Multiply the two matrices and raise this matrix to the n th power where n is a positive integer. n is finite for a finite-length line and → ∞ for an infinite-length one. Call this the "resultant" matrix.
Write the expression for Zin in terms of the resultant matrix's ABCD parameters.
Substitute in your given equation to show its correctness.

Of course this assumes you've covered 2-terminal networks. I wouldn't know another approach though.
 
rude man said:
Of course this assumes you've covered 2-terminal networks. I wouldn't know another approach though.

Thank you for your reply! To be honest I have not studied networks in any great detail at all (ie I have no clue what an ABCD matrix is)... this is just an physics EM course which has a 10 page section on transmission lines where this comes up. :/
 
Marcus95 said:
Thank you for your reply! To be honest I have not studied networks in any great detail at all (ie I have no clue what an ABCD matrix is)... this is just an physics EM course which has a 10 page section on transmission lines where this comes up. :/
As you might judge from the paucity of replies (namely mine only) this is not an elementary problem, and significant exposure to networks is most likely required.
 

Similar threads

Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
683
  • · Replies 3 ·
Replies
3
Views
4K
Replies
0
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
8
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K