MHB Integral Notation of an exponential Brownian motion

Click For Summary
The discussion focuses on the integral notation of exponential Brownian motion, specifically comparing two forms of the integral: one with the differential element $ds$ preceding the exponential term and the other with it following. It is clarified that both notations are equivalent in meaning. References to quantum mechanics texts are provided as examples where similar notation is used. Additionally, the scaling property of Brownian motion is mentioned, emphasizing that the transformation maintains the standard properties of Brownian motion. Understanding these notations is essential for grasping the mathematical framework in stochastic processes.
gnob
Messages
11
Reaction score
0
Good day!

I am reading the paper of Marc Yor (www.jstor.org/stable/1427477). equation (1.a) seems unfamiliar to me since the $ds$ comes first before the exponential part;
$$
\int_0^t ds \exp(aB_s + bs).
$$
Can you please help me clarify if there is a difference with the above notation as compared to if I write it this way:
$$
\int_0^t \exp(aB_s + bs) ds.
$$
Please give me some reference (books) on this. thanks

Secondly, how does the scaling property applied to (1.a) to become
$$
\int_0^t ds \exp 2(B_s + vs).
$$
Thanks a lot for your response. I know that the Brownian scaling states that if $B_s$ is a standard Brownian motion, then $\sqrt{c}B_{cs}$ is also a standard Brownian motion.
 
Last edited:
Mathematics news on Phys.org
gnob said:
Good day!

I am reading the paper of Marc Yor (www.jstor.org/stable/1427477). equation (1.a) seems unfamiliar to me since the $ds$ comes first before the exponential part;
$$
\int_0^t ds \exp(aB_s + bs).
$$
Can you please help me clarify if there is a difference with the above notation as compared to if I write it this way:
$$
\int_0^t \exp(aB_s + bs) ds.
$$
Please give me some reference (books) on this. thanks


Hi gnob, :)

Yes they do mean the same thing. I have seen this notation used in quantum mechanics books such as,

1) Modern Quantum Mechanics by J. Sakurai

2) Quantum Physics by S. Gasiorowicz

3) Quantum Mechanics by C.C. Tannoudji

Also a brief description about the two notations can be found >>here<<.

Kind Regards,
Sudharaka.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
2
Views
1K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
2
Views
2K