Integral Over Unit Sphere of Inner Product

Click For Summary
SUMMARY

The integral of the inner product over the unit sphere in Rn can be expressed as follows: for any vector x in Rn and for any 0 < p < ∞, the equation $\int_{S^{n-1}} \lvert \xi \cdot x \rvert^p d\sigma(\xi) = \lvert x \rvert^p \int_{S^{n-1}} \lvert \xi_1 \rvert^p d\sigma(\xi)$ holds true. The proof utilizes the formula $\int_{R^n} f(x) dx = \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} f(r \theta) d\sigma(\theta)) dr$ with the function defined as $f: R^n \rightarrow R, x \mapsto \lvert \xi \cdot x \rvert^p$. This approach confirms the relationship between the inner product and the integral over the unit sphere.

PREREQUISITES
  • Understanding of inner products in Rn
  • Familiarity with spherical coordinates and integrals over spheres
  • Knowledge of Lebesgue integration
  • Basic concepts of measure theory
NEXT STEPS
  • Study the properties of inner products in Rn
  • Learn about spherical coordinates and their applications in integration
  • Explore Lebesgue integration techniques
  • Investigate measure theory fundamentals and their relevance to integration
USEFUL FOR

Mathematicians, students of advanced calculus, and researchers in functional analysis will benefit from this discussion, particularly those focusing on integration techniques and properties of inner products in vector spaces.

joypav
Messages
149
Reaction score
0
Problem:

Prove that for any $x \in R^n$ and any $0<p<\infty$

$\int_{S^{n-1}} \rvert \xi \cdot x \rvert^p d\sigma(\xi) = \rvert x \rvert^p \int_{S^{n-1}} \rvert \xi_1 \rvert^p d\sigma(\xi)$,

where $\xi \cdot x = \xi_1 x_1 + ... + \xi_n x_n$ is the inner product in $R^n$.

Some thinking...

I believe I'd like to define a function $f$ on $R^n$ so that I can utilize the formula...

$\int_{R^n} f(x) dx = \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} f(r \theta ) d \sigma (\theta) ) dr $

If that's right... what would the function be? Maybe $f: R^n \rightarrow R, x \mapsto x_1 + x_2 + ...$?
 
Last edited:
Physics news on Phys.org
Solution:We will use the following formula:$\int_{R^n} f(x) dx = \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} f(r \theta ) d \sigma (\theta) ) dr $Let $f: R^n \rightarrow R, x \mapsto \lvert \xi \cdot x \rvert^p$, where $\xi \cdot x = \xi_1 x_1 + ... + \xi_n x_n$ is the inner product in $R^n$. Then we have:$\int_{R^n} \lvert \xi \cdot x \rvert^p dx = \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} \lvert \xi \cdot x \rvert^p d \sigma (\theta) ) dr $ $= \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} \lvert \xi_1 x_1 + ... + \xi_n x_n \rvert^p d \sigma (\theta) ) dr $ $= \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} \lvert \xi_1 \rvert^p \lvert x_1 \rvert^p + ... + \xi_n \rvert x_n \rvert^p d \sigma (\theta) ) dr $ $= \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} \lvert \xi_1 \rvert^p \lvert x_1 \rvert^p d \sigma (\theta) ) dr $ $= \lvert x \rvert^p \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} \lvert \xi_1 \rvert^p d \sigma (\theta) )
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K