MHB Integral Over Unit Sphere of Inner Product

Click For Summary
The discussion focuses on proving the integral identity for any vector \( x \in R^n \) and \( 0 < p < \infty \). It establishes that the integral of the absolute value of the inner product raised to the power \( p \) over the unit sphere equals the norm of \( x \) raised to \( p \) multiplied by a specific integral over the sphere. The approach involves defining a function \( f \) that utilizes the formula for integrating over \( R^n \) and transforming the problem into a manageable form. The solution confirms that the integral can be expressed in terms of the norm of \( x \) and an integral dependent on the first component of the vectors on the sphere. This method effectively demonstrates the relationship between the inner product and the integral over the unit sphere.
joypav
Messages
149
Reaction score
0
Problem:

Prove that for any $x \in R^n$ and any $0<p<\infty$

$\int_{S^{n-1}} \rvert \xi \cdot x \rvert^p d\sigma(\xi) = \rvert x \rvert^p \int_{S^{n-1}} \rvert \xi_1 \rvert^p d\sigma(\xi)$,

where $\xi \cdot x = \xi_1 x_1 + ... + \xi_n x_n$ is the inner product in $R^n$.

Some thinking...

I believe I'd like to define a function $f$ on $R^n$ so that I can utilize the formula...

$\int_{R^n} f(x) dx = \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} f(r \theta ) d \sigma (\theta) ) dr $

If that's right... what would the function be? Maybe $f: R^n \rightarrow R, x \mapsto x_1 + x_2 + ...$?
 
Last edited:
Physics news on Phys.org
Solution:We will use the following formula:$\int_{R^n} f(x) dx = \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} f(r \theta ) d \sigma (\theta) ) dr $Let $f: R^n \rightarrow R, x \mapsto \lvert \xi \cdot x \rvert^p$, where $\xi \cdot x = \xi_1 x_1 + ... + \xi_n x_n$ is the inner product in $R^n$. Then we have:$\int_{R^n} \lvert \xi \cdot x \rvert^p dx = \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} \lvert \xi \cdot x \rvert^p d \sigma (\theta) ) dr $ $= \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} \lvert \xi_1 x_1 + ... + \xi_n x_n \rvert^p d \sigma (\theta) ) dr $ $= \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} \lvert \xi_1 \rvert^p \lvert x_1 \rvert^p + ... + \xi_n \rvert x_n \rvert^p d \sigma (\theta) ) dr $ $= \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} \lvert \xi_1 \rvert^p \lvert x_1 \rvert^p d \sigma (\theta) ) dr $ $= \lvert x \rvert^p \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} \lvert \xi_1 \rvert^p d \sigma (\theta) )
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K