MHB Integral Relation: $|a| > |b|$

  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Integral Relation
polygamma
Messages
227
Reaction score
0
Show that for $|a| > |b| $,

$$\int_{0}^{\infty} \frac{\sinh bx}{\cosh ax + \cosh bx} \ dx = 2 \ln 2 \ \frac{b}{a^{2}-b^{2}} .$$
 
Mathematics news on Phys.org
Hint:

Show that for $a > b$, $$2 \sum_{n=1}^{\infty} (-1)^{n-1} \sinh (bnx) e^{-anx} = \frac{\sinh bx}{\cosh ax + \cosh bx} . $$
 
Here is my solution.

If $b = 0$, both sides of the equation are zero. So assume $|a| > |b| > 0$. By rescaling, the integral can be written $\int_ 0^\infty I(u; x)\, \frac{dx}{b}$ where

$\displaystyle I(u; x) = \frac{\sinh{x}}{\cosh{u x} + \cosh{x}}$

and $u = \frac{a}{b}$. Since the hyperbolic cosine is even, the value of the integral is unchanged when $u$ is replaced by $-u$. So we may assume, without loss of generality, that $u > 1$. Using the identity

$\displaystyle \cosh{ux} + \cosh{x} = \frac{e^{-ux}}{2}(e^{(u+1) x} + 1)(e^{(u-1) x} + 1)$

we obtain

$\displaystyle I(u; x) = \frac{e^{(u+1)x} - e^{(u-1) x}}{(e^{(u+1)x} + 1)(e^{(u-1) x} + 1)} = \frac{1}{e^{(u-1) x} + 1} - \frac{1}{e^{(u+1) x} + 1}$.

Since $u - 1$ and $ u + 1$ are positive, the last expression can written as the series

$\displaystyle \sum_{n = 1}^\infty (-1)^{n-1} (e^{-n (u-1) x} - e^{-n (u+1) x})$.

For $T > 0$,

$\displaystyle \sum_ {n = 1}^\infty (-1)^{n-1} \int_ T^\infty (e^{-n (u-1) x} - e^{-n (u+1)})\, dx$
$\displaystyle = \sum_{n = 1}^\infty \frac{(-1)^{n-1}{n}\left(\frac{e^{-(u-1) x}{u-1} - \frac{e^{-(u+1) x}{u+1}\right)$
$\displaystyle = \frac{\ln(1+e^{-(u-1) T})}{u-1} - \frac{\ln(1+e^{-(u+1)T})}{u+1}$,

which tends to zero as $T \to \infty$. Thus

$\displaystyle \int_0^\infty I(u; x)\, \frac{dx}{b} = \sum_{n = 1}^\infty (-1)^{n-1} \int_ 0^\infty (e^{-n (u-1)x} - e^{-n (u+1) x})\, \frac{dx}{b}\quad (*)$.

Since the integrals in (*) converge to $\frac{1}{n}\left(\frac{1}{u-1} - \frac{1}{u+1}\right)$, we deduce

$\displaystyle \int_ 0^\infty I(u; x)\, \frac{dx}{b} = \sum_{n = 1}^\infty \frac{(-1)^{n-1}}{n}\left(\frac{1}{u-1} - \frac{1}{u+1}\right) = \frac{2 \ln{2}}{b (u^2-1)} = \frac{2b\ln{2}}{a^2-b^2}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top