Integral Relation: $|a| > |b|$

  • Context: MHB 
  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Integral Relation
Click For Summary
SUMMARY

The integral relation for the condition $|a| > |b|$ is established as follows: $$\int_{0}^{\infty} \frac{\sinh bx}{\cosh ax + \cosh bx} \ dx = 2 \ln 2 \ \frac{b}{a^{2}-b^{2}}.$$ This result is derived using techniques from calculus and hyperbolic functions, confirming the relationship between the parameters $a$ and $b$. The solution emphasizes the significance of the inequality in determining the behavior of the integral.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with hyperbolic functions, specifically $\sinh$ and $\cosh$
  • Knowledge of limits and convergence of improper integrals
  • Basic principles of mathematical analysis
NEXT STEPS
  • Explore advanced techniques in integral calculus
  • Study the properties and applications of hyperbolic functions
  • Investigate the convergence criteria for improper integrals
  • Learn about the implications of inequalities in mathematical analysis
USEFUL FOR

Mathematicians, students of calculus, and anyone interested in advanced integral evaluations and the properties of hyperbolic functions.

polygamma
Messages
227
Reaction score
0
Show that for $|a| > |b| $,

$$\int_{0}^{\infty} \frac{\sinh bx}{\cosh ax + \cosh bx} \ dx = 2 \ln 2 \ \frac{b}{a^{2}-b^{2}} .$$
 
Physics news on Phys.org
Hint:

Show that for $a > b$, $$2 \sum_{n=1}^{\infty} (-1)^{n-1} \sinh (bnx) e^{-anx} = \frac{\sinh bx}{\cosh ax + \cosh bx} . $$
 
Here is my solution.

If $b = 0$, both sides of the equation are zero. So assume $|a| > |b| > 0$. By rescaling, the integral can be written $\int_ 0^\infty I(u; x)\, \frac{dx}{b}$ where

$\displaystyle I(u; x) = \frac{\sinh{x}}{\cosh{u x} + \cosh{x}}$

and $u = \frac{a}{b}$. Since the hyperbolic cosine is even, the value of the integral is unchanged when $u$ is replaced by $-u$. So we may assume, without loss of generality, that $u > 1$. Using the identity

$\displaystyle \cosh{ux} + \cosh{x} = \frac{e^{-ux}}{2}(e^{(u+1) x} + 1)(e^{(u-1) x} + 1)$

we obtain

$\displaystyle I(u; x) = \frac{e^{(u+1)x} - e^{(u-1) x}}{(e^{(u+1)x} + 1)(e^{(u-1) x} + 1)} = \frac{1}{e^{(u-1) x} + 1} - \frac{1}{e^{(u+1) x} + 1}$.

Since $u - 1$ and $ u + 1$ are positive, the last expression can written as the series

$\displaystyle \sum_{n = 1}^\infty (-1)^{n-1} (e^{-n (u-1) x} - e^{-n (u+1) x})$.

For $T > 0$,

$\displaystyle \sum_ {n = 1}^\infty (-1)^{n-1} \int_ T^\infty (e^{-n (u-1) x} - e^{-n (u+1)})\, dx$
$\displaystyle = \sum_{n = 1}^\infty \frac{(-1)^{n-1}{n}\left(\frac{e^{-(u-1) x}{u-1} - \frac{e^{-(u+1) x}{u+1}\right)$
$\displaystyle = \frac{\ln(1+e^{-(u-1) T})}{u-1} - \frac{\ln(1+e^{-(u+1)T})}{u+1}$,

which tends to zero as $T \to \infty$. Thus

$\displaystyle \int_0^\infty I(u; x)\, \frac{dx}{b} = \sum_{n = 1}^\infty (-1)^{n-1} \int_ 0^\infty (e^{-n (u-1)x} - e^{-n (u+1) x})\, \frac{dx}{b}\quad (*)$.

Since the integrals in (*) converge to $\frac{1}{n}\left(\frac{1}{u-1} - \frac{1}{u+1}\right)$, we deduce

$\displaystyle \int_ 0^\infty I(u; x)\, \frac{dx}{b} = \sum_{n = 1}^\infty \frac{(-1)^{n-1}}{n}\left(\frac{1}{u-1} - \frac{1}{u+1}\right) = \frac{2 \ln{2}}{b (u^2-1)} = \frac{2b\ln{2}}{a^2-b^2}$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K