MHB Integral Relation: $|a| > |b|$

  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Integral Relation
Click For Summary
For the condition $|a| > |b|$, the integral $\int_{0}^{\infty} \frac{\sinh bx}{\cosh ax + \cosh bx} \ dx$ can be evaluated to yield the result $2 \ln 2 \ \frac{b}{a^{2}-b^{2}}$. The discussion includes a detailed solution approach, emphasizing the importance of the relationship between the hyperbolic functions involved. The integral converges under the specified condition, leading to a clear mathematical expression. The solution demonstrates the application of techniques in integral calculus and hyperbolic function properties. This result is significant in understanding the behavior of integrals involving hyperbolic functions.
polygamma
Messages
227
Reaction score
0
Show that for $|a| > |b| $,

$$\int_{0}^{\infty} \frac{\sinh bx}{\cosh ax + \cosh bx} \ dx = 2 \ln 2 \ \frac{b}{a^{2}-b^{2}} .$$
 
Mathematics news on Phys.org
Hint:

Show that for $a > b$, $$2 \sum_{n=1}^{\infty} (-1)^{n-1} \sinh (bnx) e^{-anx} = \frac{\sinh bx}{\cosh ax + \cosh bx} . $$
 
Here is my solution.

If $b = 0$, both sides of the equation are zero. So assume $|a| > |b| > 0$. By rescaling, the integral can be written $\int_ 0^\infty I(u; x)\, \frac{dx}{b}$ where

$\displaystyle I(u; x) = \frac{\sinh{x}}{\cosh{u x} + \cosh{x}}$

and $u = \frac{a}{b}$. Since the hyperbolic cosine is even, the value of the integral is unchanged when $u$ is replaced by $-u$. So we may assume, without loss of generality, that $u > 1$. Using the identity

$\displaystyle \cosh{ux} + \cosh{x} = \frac{e^{-ux}}{2}(e^{(u+1) x} + 1)(e^{(u-1) x} + 1)$

we obtain

$\displaystyle I(u; x) = \frac{e^{(u+1)x} - e^{(u-1) x}}{(e^{(u+1)x} + 1)(e^{(u-1) x} + 1)} = \frac{1}{e^{(u-1) x} + 1} - \frac{1}{e^{(u+1) x} + 1}$.

Since $u - 1$ and $ u + 1$ are positive, the last expression can written as the series

$\displaystyle \sum_{n = 1}^\infty (-1)^{n-1} (e^{-n (u-1) x} - e^{-n (u+1) x})$.

For $T > 0$,

$\displaystyle \sum_ {n = 1}^\infty (-1)^{n-1} \int_ T^\infty (e^{-n (u-1) x} - e^{-n (u+1)})\, dx$
$\displaystyle = \sum_{n = 1}^\infty \frac{(-1)^{n-1}{n}\left(\frac{e^{-(u-1) x}{u-1} - \frac{e^{-(u+1) x}{u+1}\right)$
$\displaystyle = \frac{\ln(1+e^{-(u-1) T})}{u-1} - \frac{\ln(1+e^{-(u+1)T})}{u+1}$,

which tends to zero as $T \to \infty$. Thus

$\displaystyle \int_0^\infty I(u; x)\, \frac{dx}{b} = \sum_{n = 1}^\infty (-1)^{n-1} \int_ 0^\infty (e^{-n (u-1)x} - e^{-n (u+1) x})\, \frac{dx}{b}\quad (*)$.

Since the integrals in (*) converge to $\frac{1}{n}\left(\frac{1}{u-1} - \frac{1}{u+1}\right)$, we deduce

$\displaystyle \int_ 0^\infty I(u; x)\, \frac{dx}{b} = \sum_{n = 1}^\infty \frac{(-1)^{n-1}}{n}\left(\frac{1}{u-1} - \frac{1}{u+1}\right) = \frac{2 \ln{2}}{b (u^2-1)} = \frac{2b\ln{2}}{a^2-b^2}$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K