MHB Integral Relation: $|a| > |b|$

  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Integral Relation
polygamma
Messages
227
Reaction score
0
Show that for $|a| > |b| $,

$$\int_{0}^{\infty} \frac{\sinh bx}{\cosh ax + \cosh bx} \ dx = 2 \ln 2 \ \frac{b}{a^{2}-b^{2}} .$$
 
Mathematics news on Phys.org
Hint:

Show that for $a > b$, $$2 \sum_{n=1}^{\infty} (-1)^{n-1} \sinh (bnx) e^{-anx} = \frac{\sinh bx}{\cosh ax + \cosh bx} . $$
 
Here is my solution.

If $b = 0$, both sides of the equation are zero. So assume $|a| > |b| > 0$. By rescaling, the integral can be written $\int_ 0^\infty I(u; x)\, \frac{dx}{b}$ where

$\displaystyle I(u; x) = \frac{\sinh{x}}{\cosh{u x} + \cosh{x}}$

and $u = \frac{a}{b}$. Since the hyperbolic cosine is even, the value of the integral is unchanged when $u$ is replaced by $-u$. So we may assume, without loss of generality, that $u > 1$. Using the identity

$\displaystyle \cosh{ux} + \cosh{x} = \frac{e^{-ux}}{2}(e^{(u+1) x} + 1)(e^{(u-1) x} + 1)$

we obtain

$\displaystyle I(u; x) = \frac{e^{(u+1)x} - e^{(u-1) x}}{(e^{(u+1)x} + 1)(e^{(u-1) x} + 1)} = \frac{1}{e^{(u-1) x} + 1} - \frac{1}{e^{(u+1) x} + 1}$.

Since $u - 1$ and $ u + 1$ are positive, the last expression can written as the series

$\displaystyle \sum_{n = 1}^\infty (-1)^{n-1} (e^{-n (u-1) x} - e^{-n (u+1) x})$.

For $T > 0$,

$\displaystyle \sum_ {n = 1}^\infty (-1)^{n-1} \int_ T^\infty (e^{-n (u-1) x} - e^{-n (u+1)})\, dx$
$\displaystyle = \sum_{n = 1}^\infty \frac{(-1)^{n-1}{n}\left(\frac{e^{-(u-1) x}{u-1} - \frac{e^{-(u+1) x}{u+1}\right)$
$\displaystyle = \frac{\ln(1+e^{-(u-1) T})}{u-1} - \frac{\ln(1+e^{-(u+1)T})}{u+1}$,

which tends to zero as $T \to \infty$. Thus

$\displaystyle \int_0^\infty I(u; x)\, \frac{dx}{b} = \sum_{n = 1}^\infty (-1)^{n-1} \int_ 0^\infty (e^{-n (u-1)x} - e^{-n (u+1) x})\, \frac{dx}{b}\quad (*)$.

Since the integrals in (*) converge to $\frac{1}{n}\left(\frac{1}{u-1} - \frac{1}{u+1}\right)$, we deduce

$\displaystyle \int_ 0^\infty I(u; x)\, \frac{dx}{b} = \sum_{n = 1}^\infty \frac{(-1)^{n-1}}{n}\left(\frac{1}{u-1} - \frac{1}{u+1}\right) = \frac{2 \ln{2}}{b (u^2-1)} = \frac{2b\ln{2}}{a^2-b^2}$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top