MHB Integral that converges or diverges?

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Integral
tmt1
Messages
230
Reaction score
0
I have:

$$\int_{1}^{3} \frac{1}{\sqrt{3 - x}} \,dx$$

I can do $u = \sqrt{3 -x}$, and $du = \frac{1}{2 \sqrt{3 - x}} dx $ and $dx = 2 \sqrt{3 - x} du $. Plug into original equation:

$$\int_{1}^{3} \frac{2 u }{u} \,du$$ and $2 \int_{1}^{3} \,du = 2u = 2 \sqrt{3 - x} + C$

So $(2\sqrt{3 - 3}) - (2\sqrt{3 - 1})$ Or $- 2\sqrt{2}$. Is this correct?
 
Physics news on Phys.org
tmt said:
I have:

$$\int_{1}^{3} \frac{1}{\sqrt{3 - x}} \,dx$$

I can do $u = \sqrt{3 -x}$, and $du = \frac{1}{2 \sqrt{3 - x}} dx $ and $dx = 2 \sqrt{3 - x} du $. Plug into original equation:

$$\int_{1}^{3} \frac{2 u }{u} \,du$$ and $2 \int_{1}^{3} \,du = 2u = 2 \sqrt{3 - x} + C$

So $(2\sqrt{3 - 3}) - (2\sqrt{3 - 1})$ Or $- 2\sqrt{2}$. Is this correct?
Actually [math]du = - \frac{1}{2 \sqrt{3 - x}}~dx[/math].

Never never never never write something like [math]dx = 2 \sqrt{3 - x}~du[/math]. Keep the x's and u's on different sides of the equation. Yes you still get dx = 2u du but if you try to substitute the mixed expression into your integrand you can get messed up very quickly. (And, perhaps more to the point, it will confuse the reader.) Finish out the algebra to it's final form.

And you forgot to change the limits of the integration when you did the u-substitution.

Methodwise you did pretty good. (Nod) Just some detail work.

-Dan
 
Here's a slightly different approach...We are given:

$$I=\int_1^3 \frac{1}{\sqrt{3-x}}\,dx$$

This is an improper integral, so let's write:

$$I=\lim_{t\to3}\left(\int_1^t \frac{1}{\sqrt{3-x}}\,dx\right)$$

Let:

$$u=3-x\implies du=-dx$$

And we have:

$$I=\lim_{t\to3}\left(\int_{3-t}^2 u^{-\frac{1}{2}}\,du\right)$$

Apply the FTOC:

$$I=2\lim_{t\to3}\left(\left[u^{\frac{1}{2}}\right]_{3-t}^2\right)$$

$$I=2\lim_{t\to3}\left(\sqrt{2}-\sqrt{3-t}\right)=2\sqrt{2}$$
 

Similar threads

Back
Top