Integral with initial conditions

Click For Summary
The discussion revolves around solving a differential equation related to motion, specifically involving initial conditions and integral calculus. Participants address issues with dimensional analysis and the formulation of equations, correcting an initial incorrect equation. The conversation highlights the importance of integrating correctly and including integration constants, leading to the final correct expression for displacement as a function of time. The resolution of the problem emphasizes the need for clarity in variable definitions and the proper application of calculus techniques. The thread concludes with participants acknowledging the correct solution after addressing previous misunderstandings.
Karol
Messages
1,380
Reaction score
22

Homework Statement


Snap2.jpg
Snap4.jpg


Homework Equations


$$\frac{dy}{dx}=f(x)~\rightarrow~dy=f(x)dx~\rightarrow~y=\int f(x)dx$$
$$F=ma,~a=\frac{dv}{dt}$$

The Attempt at a Solution


$$-\frac{mgR}{s^2}=mv\left( \frac{dv}{ds} \right)\rightarrow~v^2=\frac{2gR}{s}+C$$
$$v_0(s=R)=\sqrt{2gR}\rightarrow~C=2g(R-1)$$
$$v^2=\frac{2gR}{s}+2g(R-1)$$
Not good
 
Physics news on Phys.org
The link to the image for the start of the question does not work for me.
Your very first equation looks dimensionally wrong. If s is a displacement then gR/s2 has dimension T-2.

Edit. On reloading the page the first link works, and I see that the incorrect equation is provided. It should be mgR2/s2.
 
Last edited:
$$v=\frac{ds}{dt}=v_0\sqrt{2gR}\rightarrow~s=\int v_0\sqrt{2gR} \,dt$$
But that is a function of s, not t. nowhere there is t, nor in ##~a=v\frac{dv}{ds}## nor in ##~v=v_0\sqrt{2gR}##
 
Karol said:
$$v=\frac{ds}{dt}=v_0\sqrt{2gR}\rightarrow~s=\int v_0\sqrt{2gR} \,dt$$
But that is a function of s, not t. nowhere there is t, nor in ##~a=v\frac{dv}{ds}## nor in ##~v=v_0\sqrt{2gR}##
I have no idea what you are doing there. v is not v0√(2gR). Where did that come from?
 
$$\left\{ \begin{array}{l} v^2=\frac{2gR^2}{s}+C \\ v_0(s=R)=\sqrt{2gR} \end{array} \right. \rightarrow~C=0$$
$$v^2=\frac{2gR^2}{s} \rightarrow~v=R\sqrt{\frac{2g}{s}}=v_0\sqrt{\frac{R}{s}}$$
 
Karol said:
$$\left\{ \begin{array}{l} v^2=\frac{2gR^2}{s}+C \\ v_0(s=R)=\sqrt{2gR} \end{array} \right. \rightarrow~C=0$$
$$v^2=\frac{2gR^2}{s} \rightarrow~v=R\sqrt{\frac{2g}{s}}=v_0\sqrt{\frac{R}{s}}$$
Yes.
 
So now i return to my question in post #3:
Karol said:
But that is a function of s, not t. nowhere there is t, nor in ##~a=v\frac{dv}{ds}## nor in ##~v=v_0\sqrt{\frac{R}{s}}##
 
Karol said:
So now i return to my question in post #3:
v=ds/dt.
 
$$v=\frac{ds}{dt}=v_0\sqrt{\frac{R}{s}}\rightarrow~s=\int v_0\sqrt{\frac{R}{s}} \,dt$$
 
  • #10
Karol said:
$$v=\frac{ds}{dt}=v_0\sqrt{\frac{R}{s}}\rightarrow~s=\int v_0\sqrt{\frac{R}{s}} \,dt$$
It does not go anywhere. You have a separable differential equation, you can integral a function of s with respect to s. and a function of t with respect to t.
 
  • #11
$$\frac{ds}{dt}=v_0\sqrt{\frac{R}{s}}\rightarrow~\sqrt{s}\,ds=v_0\sqrt{R}\,dt$$
$$s\sqrt{s}=v_0\sqrt{R}\cdot t \rightarrow~\sqrt{s^3}=v_0\sqrt{R}\cdot t$$
It isn't ##~\sqrt{s^3}=R^{3/2}[ 1+(3v_0t/2R) ]##
 
  • #12
Karol said:
$$\frac{ds}{dt}=v_0\sqrt{\frac{R}{s}}\rightarrow~\sqrt{s}\,ds=v_0\sqrt{R}\,dt$$
$$s\sqrt{s}=v_0\sqrt{R}\cdot t \rightarrow~\sqrt{s^3}=v_0\sqrt{R}\cdot t$$
It isn't ##~\sqrt{s^3}=R^{3/2}[ 1+(3v_0t/2R) ]##
Did you forget how to integrate a power function? And you also omitted the integration constant.
 
  • #13
$$\frac{ds}{dt}=v_0\sqrt{\frac{R}{s}}\rightarrow~\int \sqrt{s}\,ds=\int v_0\sqrt{R}\,dt$$
$$\frac{2}{3}s^{3/2}=v_0\sqrt{R}\cdot t+C$$
$$s_0(t=0)=R\rightarrow~C=\frac{2}{3}R^{3/2}$$
$$\frac{2}{3}s^{3/2}=v_0\sqrt{R}\cdot t+\frac{2}{3}R^{3/2}$$
$$\rightarrow~~\sqrt{s^3}=R^{3/2}[ 1+(3v_0t/2R) ]$$
 
  • #14
Correct, at last.
 
  • #15
Thank you ehild and Haruspex
 

Similar threads

Replies
21
Views
2K
  • · Replies 12 ·
Replies
12
Views
1K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
3
Views
2K