Integrals that keep me up at night

  • Thread starter Thread starter Physics Slayer
  • Start date Start date
  • Tags Tags
    Integrals
Click For Summary
SUMMARY

The forum discussion centers on solving complex integrals, specifically the integrals of the forms $$\int \sqrt{\tan x} + \sqrt{\cot x} \, dx$$ and $$\int \frac{1}{x^{1/2} + x^{1/3}} \, dx$$. Users share their attempts using integration by parts and substitutions, such as $$t^2 = \tan(x)$$, but often find themselves returning to the original problem. The conversation highlights the challenges of these integrals and the need for hints rather than complete solutions, emphasizing the satisfaction of achieving breakthroughs independently.

PREREQUISITES
  • Understanding of integral calculus, specifically integration techniques such as integration by parts.
  • Familiarity with trigonometric functions and their properties, particularly tangent and cotangent.
  • Knowledge of substitution methods in integration, including variable changes like $$t^2 = \tan(x)$$.
  • Basic algebraic manipulation skills for handling complex fractions and polynomial expressions.
NEXT STEPS
  • Research advanced integration techniques, focusing on integration by parts and substitutions.
  • Study the properties and applications of trigonometric integrals, particularly involving $$\tan(x)$$ and $$\cot(x)$$.
  • Explore the method of partial fractions for simplifying complex rational integrals.
  • Learn about the factorization of polynomials, especially quartics, and their relevance in integration.
USEFUL FOR

Students and educators in mathematics, particularly those studying calculus and seeking to enhance their skills in solving complex integrals. This discussion is also beneficial for anyone interested in the nuances of integration techniques and problem-solving strategies in calculus.

Physics Slayer
Messages
26
Reaction score
8
Homework Statement
Need help finding the following indefinite integrals
Relevant Equations
-
Been struggling with a few integrals, I might post a few more once I progress further in my assignment.

$$1. \int \sqrt{tanx} + \sqrt{cotx} (dx)$$

Attempt1:
for integral 1, I try to apply integration by parts on both ##\sqrt{tanx}## and ##\sqrt{cotx}## separately, I then get
$$\int \underbrace{\sqrt{tanx}}_{\textrm{u}}\underbrace{(dx)}_{\textrm{dv}} + \int \underbrace{\sqrt{cotx}}_{\textrm{u}}\underbrace{(dx)}_{\textrm{dv}}$$

this gives,
$$=\left( x\sqrt{tanx}-\int \underbrace{x}_{\textrm{u}}.\underbrace{\frac{sec^2x}{2\sqrt{tanx}}}_{\textrm{dv}}(dx)\right) + \left(x\sqrt{cotx}-\int \underbrace{x}_{\textrm{u}}.\underbrace{\frac{(-coesc^2x)}{2\sqrt{cotx}}}_{\textrm{dv}}(dx)\right)$$

after applying integration by parts again I sadly get, RHS = LHS

$$=\left(xtanx - \left(x\sqrt{tanx}-\int \sqrt{tanx}(dx)\right)\right) + \left(x\sqrt{cotx}-\left(x\sqrt{cotx}-\int\sqrt{cotx}(dx)\right)\right)$$
$$=\int\sqrt{tanx}(dx)+\int\sqrt{cotx}(dx)$$
this basically lead me back to the beginning:(

Attempt2:
I also tried using a the substitution, ##t^2 = tan(x)## but even this brought me back to where I started,
$$\int \sqrt{tanx}+\frac{1}{\sqrt{tanx}} (dx) = \int\frac{tanx+1}{\sqrt{tanx}}(dx)$$
using the above sub,
$$\int\frac{t^2+1}{t}\frac{2t}{1+t^4}(dt) = 2\int\frac{t^2+1}{t^4+1}dt$$
now ##u=t^2##
$$=\int\frac{u+1}{u^2+1}\frac{du}{\sqrt{u}}=\int\frac{\sqrt{u}}{u^2+1}+\frac{1}{\sqrt{u}(u^2+1)}(du)$$
and finally if you use the trig sub, ##u = tan\theta## you end up with,
$$=\int \sqrt{tan\theta}+\sqrt{cot\theta}(d\theta)$$
I usually don't like asking for help while solving integrals, there is a different satisfaction one gets when they finally get the "aha" moment and then solve the problem, but these are literally getting in the way of my life, I don't want entire solutions, a hint or a reassurance that I am thinking in the right direction will do :)

I need help in these two as well, but I'll show my working for them once I get this pesky one out of the way.

$$2. \int \frac{1}{x^{1/2} + x^{1/3}} (dx)$$
$$3. \int \frac{cos(2x) - sin(2\phi)}{cos(x) - sin(\phi)} (dx)$$
 
Last edited:
  • Like
Likes   Reactions: Jody
Physics news on Phys.org
Physics Slayer said:
Attempt2:
I also tried using a the substitution, ##t^2 = tan(x)## but even this brought me back to where I started,
$$\int\frac{t^2+1}{t}\frac{2t}{1+t^4}(dt) = 2\int\frac{t^2+1}{t^4+1}dt$$
This looks like progress.
Physics Slayer said:
and finally if you use the trig sub, ##u = tan\theta##
That takes you back to square one - you've undone your first substitution.
 
  • Haha
Likes   Reactions: Physics Slayer
Instead:$$\int\frac{t^2+1}{t^4+1}dt = \int\frac{t^2}{t^4+1}dt + \int\frac{1}{t^4+1}dt $$
 
PeroK said:
Instead:$$\int\frac{t^2+1}{t^4+1}dt = \int\frac{t^2}{t^4+1}dt + \int\frac{1}{t^4+1}dt $$
On second thoughts, perhaps that's not such a good idea.
 
PeroK said:
On second thoughts, perhaps that's not such a good idea.
I thought about this, but the only think I could think of was the substitution ##u=t^2## so I could get rid of ##t^4## in the denominators, but the integral was still challenging to solve.
 
Physics Slayer said:
I thought about this, but the only think I could think of was the substitution ##u=t^2## so I could get rid of ##t^4## in the denominators, but the integral was still challenging to solve.
$$t^4 +1 = (t^2 + \sqrt 2 t +1)(t^2 - \sqrt 2 t +1)$$
 
  • Love
Likes   Reactions: Physics Slayer
PeroK said:
$$t^4 +1 = (t^2 + \sqrt 2 t +1)(t^2 - \sqrt 2 t +1)$$
$$2\int\frac{t^2+1}{t^4+1}(dt) = \int\frac{2t^2+2}{(t^2+\sqrt{2}t+1)(t^2-\sqrt{2}t+1)}(dt)$$
$$\int\frac{(t^2+\sqrt{t}+1)+(t^2-\sqrt{2}t+1)}{(t^2+\sqrt{2}t+1)(t^2-\sqrt{2}t+1)}(dt)=\int\frac{1}{t^2+\sqrt{2}t+1}+\frac{1}{t^2-2\sqrt{t}+1}(dt)$$
$$\int \frac{1}{(t + \frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2} + \frac{1}{(t - \frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2} (dt)$$
we can use,
$$\int\frac{1}{x^2+a^2}dx = \frac{1}{a}tan^{-1}\left(\frac{x}{a}\right)$$
finally my ans is,
$$\sqrt{2}\left[tan^{-1}(\sqrt{2tanx}+1) + tan^{-1}(\sqrt{2tanx}-1)\right] +C$$

how were you able to factor ##(t^4+1)## into ##(t^2 -\sqrt{2}t + 1)(t^2 + \sqrt{2}t + 1)## ?
It's obviously correct(I only know because I multiplied the two and verified) but what method did you use?
 
Physics Slayer said:
how were you able to factor ##(t^4+1)## into ##(t^2 -\sqrt{2}t + 1)(t^2 + \sqrt{2}t + 1)## ?
It's obviously correct(I only know because I multiplied the two and verified) but what method did you use?
I've seen that sort of thing before. I was actually looking at complex numbers first:
$$t^4 + 1 = (t^2 + i)(t^2 - i)$$but then I remembered that you can factorise a quartic into two quadratics.
 
  • Like
Likes   Reactions: Physics Slayer
PeroK said:
I've seen that sort of thing before. I was actually looking at complex numbers first:
$$t^4 + 1 = (t^2 + i)(t^2 - i)$$but then I remembered that you can factorise a quartic into two quadratics.
You can keep going with the complex numbers:
$$t^4 + 1 = (t + \frac{1}{\sqrt 2} +\frac{i}{\sqrt 2})(t + \frac{1}{\sqrt 2} - \frac{i}{\sqrt 2})(t - \frac{1}{\sqrt 2} +\frac{i}{\sqrt 2})(t - \frac{1}{\sqrt 2} - \frac{i}{\sqrt 2})$$$$ = (t^2 +\sqrt 2 t +1)(t^2 - \sqrt 2 t +1)$$Or, simply look for$$t^4 +1 = (t^2 + at +1)(t^2 + bt + 1)$$
 
Last edited:
  • Like
Likes   Reactions: Jody
  • #10
PeroK said:
I've seen that sort of thing before. I was actually looking at complex numbers first:
$$t^4 + 1 = (t^2 + i)(t^2 - i)$$but then I remembered that you can factorise a quartic into two quadratics.
we haven't yet studied complex numbers, so I doubt this was the method they expected us to use. Either way, thanks for your help Perok.

If anybody is able to find a soln. without factorising a quartic, do let me know:smile:
 
  • #11
Physics Slayer said:
If anybody is able to find a soln. without factorising a quartic, do let me know:smile:
It's definitely the way to go. Factorise then partial fractions.
 
  • Like
Likes   Reactions: Physics Slayer
  • #12
Physics Slayer said:
If anybody is able to find a soln. without factorising a quartic, do let me know:smile:
If you can cope with the language, see:
 
  • Like
Likes   Reactions: PeroK and Physics Slayer
  • #13
Steve4Physics said:
If you can cope with the language, see:

I'm Indian so I don't mind the heavy accent,
I usually don't search up integrals because they directly slap you with the answer, and I don't like that.
thanks for the video tho :)
 
  • #14
Physics Slayer said:
I'm Indian so I don't mind the heavy accent,
I usually don't search up integrals because they directly slap you with the answer, and I don't like that.
thanks for the video tho :)
Being a bit pedantic, can I add that both the integral in Post #1 and the integral at the start of the video are incorrect (brackets)!

The integral should, of course, be:$$\int (\sqrt{tanx} + \sqrt{cotx} )dx$$
 
  • #15
Steve4Physics said:
Being a bit pedantic, can I add that both the integral in Post #1 and the integral at the start of the video are incorrect (brackets)!

The integral should, of course, be:$$\int (\sqrt{tanx} + \sqrt{cotx} )dx$$
As far as I am aware, the notation for a indefinite integral is,
$$\int f(x)dx$$
In #1, ##f(x) = \sqrt{tanx}+\sqrt{cotx}## so I don't really see what's wrong
 
  • #16
Physics Slayer said:
As far as I am aware, the notation for a indefinite integral is,
$$\int f(x)dx$$
Agreed.

Physics Slayer said:
In #1, ##f(x) = \sqrt{tanx}+\sqrt{cotx}## so I don't really see what's wrong
Maybe it's just the convention I was taught. But I would argue that if
##f(x) = \sqrt{tanx}+\sqrt{cotx}##
then in general
##f(x). a## should be be written as
##(\sqrt{tanx}+\sqrt{cotx}).a## and not as
##\sqrt{tanx}+\sqrt{cotx}.a##
because ##\sqrt{tanx}## would not get be multiplied by ##a##. (For example 1+2*3 = 7, not 9.)

This should apply whatever'##a##' is, even if it is the infinitessimal quantity ##dx##.
 
  • Like
Likes   Reactions: vela and Physics Slayer
  • #17
$$2. \int\frac{1}{x^{1/2}+x^{1/3}} dx $$
I tried both the substitutions, ##u^2=x## and ##u^3=x## and both lead to integrals I am unable to solve,

##u^2=x##
$$\int\frac{2u}{u+u^{2/3}}(du) = 2\int\frac{1}{1+u^{-1/3}}(du)=2\int\frac{u^{1/3}}{u^{1/3}+1}(du)$$
now I use the substitution ##u=t^3##
$$2\int\frac{t}{t+1}(3t^2)(dt) = 6\int\frac{t^3}{t+1}(dt) $$
I am unable to solve this final integral. I tried applying Integration by parts consecutively 3 times to get rid of the ##t^3##, but that didn't work either.

using the other substitution(##u^3=x##) I end up with,
$$3\int\frac{u^2}{u^{3/2}+u} (du) = 3\int\frac{u}{\sqrt{u}+1}(du)$$
which is again a integral I can't solve.
 
Last edited:
  • #18
Physics Slayer said:
I need help in these two as well, but I'll show my working for them once I get this pesky one out of the way.

$$2. \int \frac{1}{x^{1/2} + x^{1/3}} (dx)$$
$$3. \int \frac{cos(2x) - sin(2\phi)}{cos(x) - sin(\phi)} (dx)$$
Please post these each in an individual thread when you are ready to tackle either one.
 
  • Like
Likes   Reactions: Physics Slayer
  • #19
Why not ##x = u^6##?
 
  • #20
PeroK said:
Why not ##x = u^6##?
actually in my attempt, I first use the substitution ##x=u^2## and then the substitution ##u=t^3## which is equivalent to a single substitution ##x=t^3##

But I was since then able to solve the integral, I just had to reduce the final improper fraction into a proper fraction, it was smooth sailing from there, again thanks for you help.

$$6\int\frac{t^3}{t+1}(dt) = 6\int\frac{(t+1)(t^2-t+1)-1}{t+1}(dt)=6\int\left((t^2-t+1)-\frac{1}{t+1}\right)(dt)$$
$$=6\left(\frac{t^3}{3}-\frac{t^2}{2}+t-ln|t+1|\right)=2x^{1/2}-3x^{1/3}+6x^{1/6}-6ln|x^{1/6}+1|+C$$

SammyS said:
Please post these each in an individual thread when you are ready to tackle either one.
I thought multiple posts each with a single integral problem, would appear kind of spammy, I will most definitely encounter much harder integrals as I go ahead, I don't want to flood the forum with threads on integrals, but if that's what's supposed to be done, then I shall.
 
Last edited:
  • #21
Physics Slayer said:
actually in my attempt, I first use the substitution ##x=u^2## and then the substitution ##u=t^3## which is equivalent to a single substitution ##x=t^3##

But I was since then able to solve the integral, I just had to reduce the final improper fraction into a proper fraction, it was smooth sailing from there, again thanks for you help.

$$6\int\frac{t^3}{t+1}(dt) = 6\int\frac{(t+1)(t^2-t+1)-1}{t+1}(dt)=6\int\left((t^2-t+1)-\frac{1}{t+1}\right)(dt)$$
$$=6\left(\frac{t^3}{3}-\frac{t^2}{2}+t-ln|t+1|\right)=2x^{1/2}-3x^{1/3}+6x^{1/6}-6ln|x^{1/6}+1|+C$$I thought multiple posts on just one integral would appear kind of spammy, I will most definitely encounter much harder integrals as I go ahead, I don't want to flood the forum with threads on integrals, but if that's what's supposed to be done, then I shall.
It looks to me that those two integrals I referred to are entirely different from the first one.
 
  • #22
SammyS said:
It looks to me that those two integrals I referred to are entirely different from the first one.
yes they are indeed entirely different, they are three different problems(integrals), what I was trying to say was Three threads(+) each discussing only one integral might be a little spammy, hence I thought it would be better to discuss most of them here, but if that's not allowed then I shall start a new thread.
 
  • Like
Likes   Reactions: PeroK
  • #23
PeroK said:
Or, simply look for$$t^4 +1 = (t^2 + at +1)(t^2 +bt + 1)$$
@Physics Slayer :
Back to problem #1.

The above quote is from Post #9 by PeroK (with a minor but important Typo fixed).

Expand the right hand side and equate corresponding coefficients.

##t^4+1 = (t^2 + at +1)(t^2 +bt + 1)##

##t^4+1=t^4+(a+b)t^3+(2+ab)t^2+(a+b)t+1##

The cubic terms (also the linear terms) give you that ##\ 0 = a+b\ .\ ## Thus ##b=-a## .

The quadratic terms give you that ##0=2+ab\ .\ ## Together with the previous you get ##a^2=2.##

Thus ##a=\pm\sqrt{2 \,} ## .
 
  • Like
Likes   Reactions: jim mcnamara and Physics Slayer

Similar threads

  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
19
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
4
Views
2K
  • · Replies 27 ·
Replies
27
Views
4K
Replies
3
Views
2K