- #1

happyparticle

- 369

- 19

- Homework Statement:
- integration

- Relevant Equations:
- F = GMm/r^2

Hi,

I'm trying to integrate ## \int \frac{zdz \cdot \hat z}{(\sqrt{p^2 + z¸^2)^3}}## and ## \int \frac{pdz \cdot \hat p}{(\sqrt{p^2 + z¸^2)^3}}##

I get ## \frac{\hat z}{(\sqrt{p^2 + z¸^2)}}## and ## \frac{2z \cdot \hat p}{(\sqrt{p^2 + z¸^2)}}##

But the correct answer should be ## \frac{z \hat z}{(\sqrt{p^2 + z¸^2)}}## and ## \frac{2z \cdot \hat p}{(p\sqrt{p^2 + z¸^2)}}##

I'm not sure how to deal with ##\hat z## and ##\hat p##

I'm trying to integrate ## \int \frac{zdz \cdot \hat z}{(\sqrt{p^2 + z¸^2)^3}}## and ## \int \frac{pdz \cdot \hat p}{(\sqrt{p^2 + z¸^2)^3}}##

I get ## \frac{\hat z}{(\sqrt{p^2 + z¸^2)}}## and ## \frac{2z \cdot \hat p}{(\sqrt{p^2 + z¸^2)}}##

But the correct answer should be ## \frac{z \hat z}{(\sqrt{p^2 + z¸^2)}}## and ## \frac{2z \cdot \hat p}{(p\sqrt{p^2 + z¸^2)}}##

I'm not sure how to deal with ##\hat z## and ##\hat p##