Undergrad Integrating sqrt(x) cos(sqrt(x)) dx

Click For Summary
The discussion revolves around the integration of the function sqrt(x) cos(sqrt(x)) dx using integration by parts. The initial attempt involved incorrect differentiation and integration steps, leading to confusion about the correct formulation of the integral. Participants pointed out that the integration of cos(sqrt(x)) should not disregard the sqrt(x) factor in front, which is crucial for accurate results. The correct approach involves recognizing the relationship between the derivative of sin(sqrt(x)) and its integral, clarifying that the integration by parts method must be applied correctly. Ultimately, the original question remains unresolved, with participants seeking clarity on the proper integration technique.
Phys12
Messages
351
Reaction score
42
Question: sqrt(x) cos(sqrt(x)) dx
My try:

Let dv = cos(√x) => v = 2√xsin(√x) and u = √x => du = dx/(2√x)

Using integration by parts, we get

∫√x cos(√x) dx = 2√x√x sin(√x) - ∫(2√xsin(√x) dx)/(2√x)
= 2x sin(√x) - ∫sin(√x) dx

= 2x sin(√x) + 2 cos(√x) √x

However, the answer given in the book is: http://www.wolframalpha.com/input/?i=integrate+sqrt(x)++cos(sqrt(x))

And a solution that I found says: http://www.slader.com/textbook/9780534465544-calculus-early-transcendentals/601/61-exercises/23/

Which one of us is correct? And if I am wrong, what am I doing wrong and how may I correct it?
 
Physics news on Phys.org
Phys12 said:
Question: sqrt(x) cos(sqrt(x)) dx
My try:

Let dv = cos(√x) => v = 2√xsin(√x)
This is not correct.
 
nrqed said:
This is not correct.
I differentiated sin(sqrt(x)) and figured it out that way, why does it not work?
 
Phys12 said:
I differentiated sin(sqrt(x)) and figured it out that way, why does it not work?
I realize this is what you did but why did you not differentiate also the ##\sqrt{x}## in front?
 
nrqed said:
I realize this is what you did but why did you not differentiate also the ##\sqrt{x}## in front?
Inside the sin()? I did do that
 
Phys12 said:
Inside the sin()? I did do that
No, the ##\sqrt{x}## in **front** of the sine.
 
nrqed said:
No, the ##\sqrt{x}## in **front** of the sine.
Well, this is what I did:

d(sin(sqrt(x)))/dx = cos(sqrt(x))/2(sqrt(x) => integral cos(sqrt(x)) = 2 sqrt(x) sin(sqrt(x))
 
Phys12 said:
Well, this is what I did:

d(sin(sqrt(x)))/dx = cos(sqrt(x))/2(sqrt(x) => integral cos(sqrt(x)) = 2 sqrt(x) sin(sqrt(x))
You cannot move the ##\sqrt{x}## on the other side like that (in your last step).
What you showed is that
$$ \frac{ d}{dx} \sin(\sqrt{x}) = \frac{\cos(\sqrt{x})}{2 \sqrt{x}} $$

which means the following

$$ \int \frac{\cos(\sqrt{x})}{2 \sqrt{x}} = \sin(\sqrt{x}) +C $$ This is all that one can conclude from your calculation. So your v is incorrect
 
nrqed said:
You cannot move the ##\sqrt{x}## on the other side like that (in your last step).
What you showed is that
$$ \frac{ d}{dx} \sin(\sqrt{x}) = \frac{\cos(\sqrt{x})}{2 \sqrt{x}} $$

which means the following

$$ \int \frac{\cos(\sqrt{x})}{2 \sqrt{x}} = \sin(\sqrt{x}) +C $$ This is all that one can conclude from your calculation. So your v is incorrect
So I used integration by parts and got the correct answer, however, now, for the original question, I got this:

sqrt(x) [2 sqrt(x) sin(sqrt(x)) + 2 cos(sqrt(x))] - int (sin(sqrt(x)) dx) - int(cos(sqrt(x)) dx/sqrt(x))
and when I solve further, I get:

int (sin(sqrt(x)) dx) = -2 cos(x) x + 2 sin(x)

and int(cos(sqrt) dx/sqrt(x)) = 2 sin(sqrt(x))

and end up getting the wrong answer. :/ What am I doing wrong?
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K