Integrating Trigonometric Functions with Powers and Substitution

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Trig
Click For Summary
SUMMARY

The integral \( I = \int_{0}^{\pi/2}\cos^3(x)\sin(2x) \,dx \) evaluates to \( \frac{2}{5} \) through the substitution \( u = \cos(x) \), which transforms the integral into \( I = 2\int_{0}^{1} u^4 \, du \). The limits of integration change from \( x = 0 \) to \( x = \frac{\pi}{2} \) into \( u = 1 \) to \( u = 0 \). The final evaluation confirms that \( I = 2\left| \frac{u^5}{5} \right|_{0}^{1} = \frac{2}{5} \).

PREREQUISITES
  • Understanding of definite integrals
  • Familiarity with trigonometric identities, specifically \( \sin(2x) = 2\sin(x)\cos(x) \)
  • Knowledge of substitution methods in integral calculus
  • Basic skills in evaluating polynomial integrals
NEXT STEPS
  • Study the method of integration by substitution in calculus
  • Learn about the properties of definite integrals and how limits change with substitution
  • Explore trigonometric integrals and their applications in calculus
  • Practice evaluating integrals involving powers of trigonometric functions
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integral calculus, and anyone looking to deepen their understanding of trigonometric integrals and substitution techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{S6.7.R.27}$
$$\displaystyle
I=\int_{0}^{\pi/2}\cos^3\left({x}\right)\sin\left({2x}\right) \,dx = \frac{2}{5}$$
since $\sin\left({2x}\right)=2\sin\left({x}\right)\cos\left({x}\right) $ then..
$$I=2\int_{0}^{\pi/2}\cos^4\left({x}\right)\sin\left({x}\right)\, dx \\
\begin{align}
u&=\cos\left({x}\right) &du=-\sin\left({x}\right) \, dx
\end{align}$$
then
$$\displaystyle
I=\int_{0}^{\pi/2}{u}^{4} \, du$$

I continued but didn't get the answer for some reason
 
Physics news on Phys.org
When you do a substitution, what happen to the limits of the integral?
 
$\large{S6.7.R.27}$
$$\displaystyle
I=\int_{0}^{\pi/2}\cos^3\left({x}\right)\sin\left({2x}\right) \,dx = \frac{2}{5}$$
since $\sin\left({2x}\right)=2\sin\left({x}\right)\cos\left({x}\right) $ then..
$$I=-2\int_{0}^{\pi/2}\cos^4\left({x}\right)\sin\left({x}\right)\, dx \\
\begin{align}
u&=\cos\left({x}\right) &du&=-\sin\left({x}\right) \, dx \\
0&=\cos\left({\frac{\pi}{2}}\right) &1 &=\cos\left({0}\right)
\end{align}$$
then
$$\displaystyle
I=2\int_{0}^{1} {u}^{4} \, du
=2\left| \frac{{u}^{5}}{5} \right|_{0}^1$$
 
Last edited:
$\cos(0)=1$, so you've got

$$-2\int_1^0u^4\,du=2\int_0^1u^4\,du$$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
953
  • · Replies 1 ·
Replies
1
Views
2K