MHB Integrating Trigonometric Functions with Powers and Substitution

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Trig
Click For Summary
The integral \( I = \int_{0}^{\pi/2}\cos^3(x)\sin(2x) \,dx \) simplifies to \( I = 2\int_{0}^{\pi/2}\cos^4(x)\sin(x) \,dx \) using the identity for \( \sin(2x) \). A substitution \( u = \cos(x) \) leads to \( du = -\sin(x) \,dx \), changing the limits from \( 0 \) to \( 1 \). The integral then becomes \( I = 2\int_{0}^{1} u^4 \,du \), which evaluates to \( \frac{2}{5} \). The discussion emphasizes the importance of adjusting limits when performing substitutions in integrals.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{S6.7.R.27}$
$$\displaystyle
I=\int_{0}^{\pi/2}\cos^3\left({x}\right)\sin\left({2x}\right) \,dx = \frac{2}{5}$$
since $\sin\left({2x}\right)=2\sin\left({x}\right)\cos\left({x}\right) $ then..
$$I=2\int_{0}^{\pi/2}\cos^4\left({x}\right)\sin\left({x}\right)\, dx \\
\begin{align}
u&=\cos\left({x}\right) &du=-\sin\left({x}\right) \, dx
\end{align}$$
then
$$\displaystyle
I=\int_{0}^{\pi/2}{u}^{4} \, du$$

I continued but didn't get the answer for some reason
 
Physics news on Phys.org
When you do a substitution, what happen to the limits of the integral?
 
$\large{S6.7.R.27}$
$$\displaystyle
I=\int_{0}^{\pi/2}\cos^3\left({x}\right)\sin\left({2x}\right) \,dx = \frac{2}{5}$$
since $\sin\left({2x}\right)=2\sin\left({x}\right)\cos\left({x}\right) $ then..
$$I=-2\int_{0}^{\pi/2}\cos^4\left({x}\right)\sin\left({x}\right)\, dx \\
\begin{align}
u&=\cos\left({x}\right) &du&=-\sin\left({x}\right) \, dx \\
0&=\cos\left({\frac{\pi}{2}}\right) &1 &=\cos\left({0}\right)
\end{align}$$
then
$$\displaystyle
I=2\int_{0}^{1} {u}^{4} \, du
=2\left| \frac{{u}^{5}}{5} \right|_{0}^1$$
 
Last edited:
$\cos(0)=1$, so you've got

$$-2\int_1^0u^4\,du=2\int_0^1u^4\,du$$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
898
  • · Replies 1 ·
Replies
1
Views
2K