1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Integration by Partial Fractions - Long Problem

  1. Sep 21, 2008 #1
    1. The problem statement, all variables and given/known data
    [tex]
    \int {\frac{{2s + 2}}
    {{(s^2 + 1)(s - 1)^3 }}ds}
    [/tex]

    3. The attempt at a solution

    This is a long one....First, I split the integrand into partial fractions and find the coefficients:

    [tex]
    \begin{gathered}
    \frac{{2s + 2}}
    {{(s^2 + 1)(s - 1)^3 }} = \frac{{As + B}}
    {{s^2 + 1}} + \frac{C}
    {{s - 1}} + \frac{D}
    {{(s - 1)^2 }} + \frac{E}
    {{(s - 1)^3 }} \hfill \\
    2s + 2 = (As + B)(s - 1)^3 + C(s^2 + 1)(s - 1)^2 + D(s^2 + 1)(s - 1) + E(s^2 + 1) \hfill \\
    2s + 2 = (As + B)(s^3 - 3s^2 + 3s - 1) + C(s^4 - 2s^3 + 2s^2 - 2s + 1) + D(s^3 - s^2 + s - 1) + E(s^2 + 1) \hfill \\
    \end{gathered}
    [/tex]

    Now find the coefficients. I suppose you can use a calculator if you want to check for these. :rofl:

    [tex]
    \begin{gathered}
    s^4 :A + C = 0 \hfill \\
    s^3 :B - 3A - 2C + D = 0 \hfill \\
    s^2 :3A - 3B + 2C - D = 0 \hfill \\
    s^1 :3B - A - 2C + D = 2 \hfill \\
    s^0 :C - B - D + E = 2 \hfill \\
    \end{gathered}
    [/tex]

    After solving....

    [tex]
    \begin{gathered}
    A: - 1/2 \hfill \\
    B:1/2 \hfill \\
    C:1/2 \hfill \\
    D: - 1 \hfill \\
    E:1 \hfill \\
    \end{gathered}
    [/tex]

    [tex]
    \begin{gathered}
    \int {\frac{{2s + 2}}
    {{(s^2 + 1)(s - 1)^3 }}} = \int {\left[ {\frac{{As + B}}
    {{s^2 + 1}} + \frac{C}
    {{s - 1}} + \frac{D}
    {{(s - 1)^2 }} + \frac{E}
    {{(s - 1)^3 }}} \right]} ds \hfill \\
    \int {\frac{{2s + 2}}
    {{(s^2 + 1)(s - 1)^3 }}} = \int {\left[ {\frac{{( - 1/2)s + (1/2)}}
    {{s^2 + 1}} + \frac{{1/2}}
    {{s - 1}} + \frac{{ - 1}}
    {{(s - 1)^2 }} + \frac{1}
    {{(s - 1)^3 }}} \right]} ds \hfill \\
    \end{gathered}
    [/tex]

    Alright, now just solving the integral:

    [tex]
    \begin{gathered}
    \int {\frac{{2s + 2}}
    {{(s^2 + 1)(s - 1)^3 }}} = \frac{1}
    {2}\int {\frac{{ds}}
    {{s^2 + 1}} - \frac{1}
    {2}\int {\frac{{ds}}
    {{s^2 + 1}}} + \int {\frac{{1/2}}
    {{s - 1}}ds - } } \int {\frac{{ds}}
    {{(s - 1)^2 }} + \int {\frac{{ds}}
    {{(s - 1)^3 }}} } \hfill \\
    \int {\frac{{2s + 2}}
    {{(s^2 + 1)(s - 1)^3 }}} = \frac{1}
    {2}\tan ^{ - 1} s - \frac{1}
    {4}\ln (s^2 + 1) + \frac{1}
    {2}\ln |s - 1| + \frac{1}
    {{s - 1}} - \frac{1}
    {{2(s - 1)^2 }} + C \hfill \\
    \end{gathered}
    [/tex]

    Here's what the book says:

    [tex]
    \int {\frac{{2s + 2}}
    {{(s^2 + 1)(s - 1)^3 }}} = \frac{{ - 1}}
    {{(s - 1)^2 }} + \frac{1}
    {{(s - 1)}} + \tan ^{ - 1} s + C
    [/tex]
     
  2. jcsd
  3. Sep 21, 2008 #2

    Defennder

    User Avatar
    Homework Helper

    You forgot E as coefficient of s^2.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Integration by Partial Fractions - Long Problem
Loading...