In Jackson's 'classical electrodynamics' he re-expresses a volume integral of a vector in terms of a moment like divergence:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\begin{align}\int \mathbf{J} d^3 x = - \int \mathbf{x} ( \boldsymbol{\nabla} \cdot \mathbf{J} ) d^3 x\end{align} [/tex]

He calls this change "integration by parts". If this is integration by parts, there must be some form of chain rule (where one of the terms is zero on the boundry), but I can't figure out what that chain rule would be. I initially thought that the expansion of

[tex]\begin{align}\boldsymbol{\nabla} (\mathbf{x} \cdot \mathbf{J})\end{align} [/tex]

might have the structure I was looking for (i.e. something like [itex]\mathbf{x} \boldsymbol{\nabla} \cdot \mathbf{J}+\mathbf{J} \boldsymbol{\nabla} \cdot \mathbf{x}[/itex]), however

[tex]\begin{align}\boldsymbol{\nabla} (\mathbf{x} \cdot \mathbf{J}) =\mathbf{x} \cdot \boldsymbol{\nabla} \mathbf{J}+\mathbf{J} \cdot \boldsymbol{\nabla} \mathbf{x}+ \mathbf{x} \times ( \boldsymbol{\nabla} \times \mathbf{J} )= \mathbf{J} + \sum_a x_a \boldsymbol{\nabla} J_a.\end{align} [/tex]

I tried a few other gradients of various vector products (including [itex]\boldsymbol{\nabla} \times ( \mathbf{x} \times \mathbf{J} )[/itex]), but wasn't able to figure out one that justifies what the author did with this integral.

I am probably missing something obvious (or at least something that is obvious to Jackson) ?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integration by parts, changing vector to moment & divergence

Tags:

Loading...

Similar Threads - Integration parts changing | Date |
---|---|

I Integration by parts | Dec 12, 2017 |

A Integration by parts of a differential | Jul 28, 2017 |

I Integrating sqrt(x) cos(sqrt(x)) dx | Dec 18, 2016 |

I Integration by Parts without using u, v | Nov 30, 2016 |

I Vector integration by parts | May 18, 2016 |

**Physics Forums - The Fusion of Science and Community**