fallen186
- 41
- 0
Homework Statement
\int x^5cos(x^3) dx
Homework Equations
\int uv' = uv - \int u'v
The Attempt at a Solution
\int x^5cos(x^3) dx
u = x^5
du = 5x^4
v = \frac{sin(x^3)}{(3x^2)}
dv = cos(x^3)
\frac{(x^5)*(sin(x^3)}{(3x^2)} - \int\frac{5x^4*sin(x^3)}{(3x^2)} dx
\frac{(x^3)*sin(x^3)}{3} - \int\frac{(5x^2)*sin(x^3)}{(3)} dx
\frac{(x^3)*sin(x^3)}{3} - \frac{5}{3} \int x^2*sin(x^3) dx
u = x^3
du = 3x^2 dx
dx = \frac{du}{3x^2}
\int x^2*sin(u) *\frac{du}{3x^2}
\frac{1}{3} \int sin(u) du
\frac{-1}{3} cos(u)
\frac{-1}{3} cos(x^3)
Revisting
\frac{(x^3)*sin(x^3)}{3} - \frac{5}{3} * \frac{-1}{3} cos(x^3)
My answer:
\frac{(x^3)*sin(x^3)}{3} + \frac{5}{9} * cos(x^3) + C
Correct Answer:
\frac{(x^3)*sin(x^3)}{3} + \frac{1}{3} * cos(x^3) + C