- #1
jkristia
- 54
- 0
θ
I'm trying to do an integration by substitution, but I'm completely stuck at the moment
∫(1-sin2θ)cosθ dθ
∫u dv = uv - ∫v du
u = 1 - sin2θ
dv = cosθ dθ
du = -2sinθcosθ or -sin(2θ)
v = sin
I found du as the derivative of (1 - sin2)
= 0 - 2(sin)(cos) = -2sinθcosθ
Now when I insert I get
(1 - sin2θ)(sinθ) - ∫(sinθ)(-2sinθcosθ)
sinθ-sin3θ - ∫-2 sin2θcosθ
sinθ-sin3θ - (-2) ∫sin2θcosθ
sinθ-sin3θ - (-2) ∫(1-cos2θ)cosθ
sinθ-sin3θ - (-2) ∫cosθ-cos3θ
I think I'm on the wrong track here.
Where did I go wrong? - any help is much appreciated.
Thanks
Homework Statement
I'm trying to do an integration by substitution, but I'm completely stuck at the moment
∫(1-sin2θ)cosθ dθ
Homework Equations
∫u dv = uv - ∫v du
The Attempt at a Solution
u = 1 - sin2θ
dv = cosθ dθ
du = -2sinθcosθ or -sin(2θ)
v = sin
I found du as the derivative of (1 - sin2)
= 0 - 2(sin)(cos) = -2sinθcosθ
Now when I insert I get
(1 - sin2θ)(sinθ) - ∫(sinθ)(-2sinθcosθ)
sinθ-sin3θ - ∫-2 sin2θcosθ
sinθ-sin3θ - (-2) ∫sin2θcosθ
sinθ-sin3θ - (-2) ∫(1-cos2θ)cosθ
sinθ-sin3θ - (-2) ∫cosθ-cos3θ
I think I'm on the wrong track here.
Where did I go wrong? - any help is much appreciated.
Thanks