Integration in Polar Coordinates (Fubini/Tonelli)

Click For Summary

Discussion Overview

The discussion revolves around the integration of functions in polar coordinates, specifically using the Fubini and Tonelli theorems. Participants explore the mathematical formulation of the integral in polar coordinates and the implications of defining measures on certain sets.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a definition of a measure on the sphere and formulates an integral representation for non-negative Borel functions on \( \mathbb{R}^n \).
  • Another participant questions the notation used in the integral, specifically regarding the measure denoted by \( d\lambda \) and its relation to the Lebesgue measure.
  • Further elaboration on the push-forward of measures is provided, with a focus on the mapping from polar coordinates to Cartesian coordinates.
  • Some participants express confusion about the product of measures \( \alpha \times \sigma \) and seek clarification on the relationship between the measures involved.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the clarity of the definitions and the application of the push-forward theorem. There are multiple viewpoints regarding the notation and the mathematical steps involved.

Contextual Notes

There are unresolved questions regarding the assumptions behind the measures defined and the specific conditions under which the integrals are evaluated. The discussion reflects a range of interpretations of the mathematical framework presented.

joypav
Messages
149
Reaction score
0
Let $S^{n-1} = \left\{ x \in R^2 : \left| x \right| = 1 \right\}$ and for any Borel set $E \in S^{n-1}$ set $E* = \left\{ r \theta : 0 < r < 1, \theta \in E \right\}$. Define the measure $\sigma$ on $S^{n-1}$ by $\sigma(E) = n \left| E* \right|$.

With this definition the surface area $\omega_{n-1}$ of the sphere in $R^n$ satisfies $\omega_{n-1} = n \gamma_n = \frac{2 \pi^{n/2}}{\Gamma (n/2)}$, where $\gamma_n$ is the volume of the unit ball in $R^n$. Prove that for all non-negative Borel functions $f$ on $R^n$,

$\int_{R^n} f(x) dx = \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} f(r \theta ) d \sigma (\theta) ) dr $.

In particular, if $f$ is a radial function, then ($f$ radial $\implies f(x) = f(\left| x \right|)$)

$\int_{R^n} f(x) dx = \frac{2 \pi^{n/2}}{\Gamma (n/2)} \int_0^{\infty} r^{n-1} f(r) dr = n \gamma_n \int_0^{\infty} r^{n-1} f(r) dr$.

I admit my head is spinning over this problem. Can someone give me an idea of the proof or explain the idea of it more clearly...
Also, this problem is in the section for Fubini/Tonelli Theorems.
 
Physics news on Phys.org
joypav said:
Let $S^{n-1} = \left\{ x \in R^2 : \left| x \right| = 1 \right\}$ and for any Borel set $E \in S^{n-1}$ set $E* = \left\{ r \theta : 0 < r < 1, \theta \in E \right\}$. Define the measure $\sigma$ on $S^{n-1}$ by $\sigma(E) = n \left| E* \right|$.

With this definition the surface area $\omega_{n-1}$ of the sphere in $R^n$ satisfies $\omega_{n-1} = n \gamma_n = \frac{2 \pi^{n/2}}{\Gamma (n/2)}$, where $\gamma_n$ is the volume of the unit ball in $R^n$. Prove that for all non-negative Borel functions $f$ on $R^n$,

$\int_{R^n} f(x) dx = \int_0^{\infty} r^{n-1} (\int_{S^{n-1}} f(r \theta ) d \sigma (\theta) ) dr $.

In particular, if $f$ is a radial function, then ($f$ radial $\implies f(x) = f(\left| x \right|)$)

$\int_{R^n} f(x) dx = \frac{2 \pi^{n/2}}{\Gamma (n/2)} \int_0^{\infty} r^{n-1} f(r) dr = n \gamma_n \int_0^{\infty} r^{n-1} f(r) dr$.

I admit my head is spinning over this problem. Can someone give me an idea of the proof or explain the idea of it more clearly...
Also, this problem is in the section for Fubini/Tonelli Theorems.
$\newcommand{\set}[1]{\{#1\}}$
$\newcommand{\vp}{\varphi}$
$\newcommand{\mc}{\mathcal}$
$\newcommand{\R}{\mathbf R}$Let $(X, \mc X, \mu)$ be a measure space and $(Y, \mc Y)$ be a measurable space and let $\vp:X\to Y$ be a measurable function.
We define the push-forward of $\mu$ via $\vp$ as a measure on $(Y, \mc Y)$, which we denote by $\vp_*\mu$, by declaring $(\vp_*\mu)(E)=\mu(\vp^{-1}(E))$ for all $E\in \mc Y$.

A key theorem, which is easy to prove, is that if $g:Y\to \R$ is a measurable function such that $g\circ f$ is an integrable function on $X$, the we have
\begin{equation}
\int_X g\circ \vp\ d\mu = \int_Y g\ d(\vp_*\mu)
\end{equation}

We will use this theorem to solve the problem at hand.
We have a natural map $\vp: (0, \infty)\times S^{n-1}\to \R^n\setminus\set{0}$ which sends $(r, \theta)$ to $r\theta$.
Write $\nu$ to denote the Lebesgue measure on $\R^n\setminus \set{0}$.
Define a measure $\mu$ on $(0, \infty)\times S^{n-1}$ as $\mu=\vp^{-1}_*\nu$.
The main observation is that if $\lambda$ is the Lebesgue measure on $\R$, then the measure $\mu$ is the product $\alpha\times \sigma$, where $\alpha$ is given by $d\alpha= x^{n-1} d\lambda$.

So we have
\begin{equation}
\int_{\R^n}f\ d\nu =\int_{\R^n\setminus \set{0}} f\ d\nu = \int_{(0, \infty)\times S^{n-1}} f\circ \vp\ d(\alpha\times \sigma)
\end{equation}

Now by Fubini
\begin{equation}
\int_{(0, \infty)\times S^{n-1}} f\circ \vp\ d(\alpha\times \sigma) = \int_0^\infty \left(\int_{S^{n-1}} f\circ \vp(r, \theta) \ d\sigma(\theta)\right) d\alpha(r)
\end{equation}
which is, by the fact that $d\alpha=x^{n-1} \ d\lambda$, is

\begin{equation}
\int_0^\infty \left(\int_{S^{n-1}} f\circ \vp(r, \theta) \ d\sigma(\theta)\right) d\alpha(r)=\int_0^\infty r^{n-1} \left(\int_{S^{n-1}} f(r\theta) \ d\sigma(\theta)\right) d\lambda(r)
\end{equation}
 
Thank you!
Makes sense. I wonder why we haven't seen the "push forward"? (Wondering)

In the very first integral, is that meant to be $d\lambda$?
 
joypav said:
Thank you!
Makes sense. I wonder why we haven't seen the "push forward"? (Wondering)

In the very first integral, is that meant to be $d\lambda$?
I am using $\nu$ to denote the Lebesgue measure on $\mathbb R^n$ and $\lambda$ to denote the Lebesgue measure on $\mathbb R$.
 
caffeinemachine said:
$\newcommand{\set}[1]{\{#1\}}$
$\newcommand{\vp}{\varphi}$
$\newcommand{\mc}{\mathcal}$
$\newcommand{\R}{\mathbf R}$Let $(X, \mc X, \mu)$ be a measure space and $(Y, \mc Y)$ be a measurable space and let $\vp:X\to Y$ be a measurable function.
We define the push-forward of $\mu$ via $\vp$ as a measure on $(Y, \mc Y)$, which we denote by $\vp_*\mu$, by declaring $(\vp_*\mu)(E)=\mu(\vp^{-1}(E))$ for all $E\in \mc Y$.

A key theorem, which is easy to prove, is that if $g:Y\to \R$ is a measurable function such that $g\circ f$ is an integrable function on $X$, the we have
\begin{equation}
\int_X g\circ \vp\ d\mu = \int_Y g\ d(\vp_*\mu)
\end{equation}

We will use this theorem to solve the problem at hand.
We have a natural map $\vp: (0, \infty)\times S^{n-1}\to \R^n\setminus\set{0}$ which sends $(r, \theta)$ to $r\theta$.
Write $\nu$ to denote the Lebesgue measure on $\R^n\setminus \set{0}$.
Define a measure $\mu$ on $(0, \infty)\times S^{n-1}$ as $\mu=\vp^{-1}_*\nu$.
The main observation is that if $\lambda$ is the Lebesgue measure on $\R$, then the measure $\mu$ is the product $\alpha\times \sigma$, where $\alpha$ is given by $d\alpha= x^{n-1} d\lambda$.

So we have
\begin{equation}
\int_{\R^n}f\ d\nu =\int_{\R^n\setminus \set{0}} f\ d\nu = \int_{(0, \infty)\times S^{n-1}} f\circ \vp\ d(\alpha\times \sigma)
\end{equation}

Now by Fubini
\begin{equation}
\int_{(0, \infty)\times S^{n-1}} f\circ \vp\ d(\alpha\times \sigma) = \int_0^\infty \left(\int_{S^{n-1}} f\circ \vp(r, \theta) \ d\sigma(\theta)\right) d\alpha(r)
\end{equation}
which is, by the fact that $d\alpha=x^{n-1} \ d\lambda$, is

\begin{equation}
\int_0^\infty \left(\int_{S^{n-1}} f\circ \vp(r, \theta) \ d\sigma(\theta)\right) d\alpha(r)=\int_0^\infty r^{n-1} \left(\int_{S^{n-1}} f(r\theta) \ d\sigma(\theta)\right) d\lambda(r)
\end{equation}
sorry if I am re opening this , I have the same problem , can you explain why $\mu$ is the product $\alpha\times \sigma$, where $\alpha$ is given by $d\alpha= x^{n-1} d\lambda$.? Really thanks
 

Similar threads

  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K