MHB Integration of exponential function

Click For Summary
The integral setup for the function $\displaystyle\int_0^a (e^{\frac{x}{a}}-e^{-\frac{x}{a}})$ was confirmed to be correct. The user applied substitution effectively, using $u=\frac{x}{a}$ and $v=-\frac{x}{a}$ to transform the integrand. The final expression after evaluating the limits of integration was simplified to $a(e+\frac{1}{e}-2)$. The response confirmed that the calculations were accurate. The discussion highlights the importance of proper substitution and limit evaluation in integral calculus.
paulmdrdo1
Messages
382
Reaction score
0
just want to confirm if i did set up my integral correctly and got a correct answer.


$\displaystyle\int_0^a (e^{\frac{x}{a}}-e^{-\frac{x}{a}})$

using substitution for the first term in my integrand

$\displaystyle u=\frac{x}{a}$ $\displaystyle du=\frac{1}{a}dx$; $\displaystyle dx=adu
$

for the second term of my integrand,

$\displaystyle v=-\frac{x}{a}$; $\displaystyle dv=-\frac{1}{a}dx$; $\displaystyle dx=adv$

my integrand will now be,

$\displaystyle a\int_0^a e^udu+a\int_0^a e^{-v}dv$

$\displaystyle ae^{\frac{x}{a}}+ae^{-\frac{x}{a}}|_0^a$

plugging in limits of integration,

$\displaystyle ae^{\frac{a}{a}}+ae^{-\frac{a}{a}}-(ae^{\frac{0}{a}}+ae^{-\frac{0}{a}})$

simplifying we have,

$\displaystyle ae^1+ae^{-1}-ae^0-ae^{0}=ae+ae^{-1}-2a=a(e+\frac{1}{e}-2)$

please kindly check if i have any errors. thanks!

 
Physics news on Phys.org
Re: integration of exponential function

Correct :) .
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K