I analyze this problem using Fraunhofer diffraction theory, to whit, the complex amplitude of the diffracted wave is,
$$
U(z,y,z)\propto \int \int_{Aperture}A(x^{'},y^{'})e^{-i\frac{2\pi}{\lambda}(ux^{'}+vy^{'})}dx^{'}dy^{'}
$$
where ##A(x^{'},y^{'})## is the complex amplitude over the surface of the aperture. I wave my hand and declare the constant of proportionality is ##\sqrt{I_0}##, and refer to the diagram below for the limits of integration in the five transparent regions of the unit cell.
$$
U_1= \sqrt{I_0}\int_{-\frac{1}{2}}^{-\frac{1}{4}}e^{-i\frac{2\pi}{\lambda}ux^{'}}dx^{'}\int_{-\frac{1}{2}}^{-\frac{1}{4}}e^{-i\frac{2\pi}{\lambda}vy^{'}}dy^{'}
$$
$$
=\sqrt{I_0}\frac{e^{-i\frac{2\pi}{\lambda}ux^{'}}}{-i\frac{2\pi}{\lambda}u}|_{-\frac{1}{2}}^{-\frac{1}{4}}\frac{e^{-i\frac{2\pi}{\lambda}vy^{'}}}{-i\frac{2\pi}{\lambda}v}|_{-\frac{1}{2}}^{-\frac{1}{4}}
$$
$$
=\sqrt{I_0}\frac{e^{i\frac{\pi}{4\lambda}(3u+3v)}}{16}sinc(\frac{\pi u}{4\lambda})sinc(\frac{\pi v}{4\lambda})
$$
in likewise manner we compute,
$$
U_2=\sqrt{I_0}\frac{e^{i\frac{\pi}{4\lambda}(u+v)}}{16}sinc(\frac{\pi u}{4\lambda})sinc(\frac{\pi v}{4\lambda})
$$
$$
U_3=\sqrt{I_0}\frac{e^{i\frac{\pi}{4\lambda}(u-v)}}{16}sinc(\frac{\pi u}{4\lambda})sinc(\frac{\pi v}{4\lambda})
$$
$$
U_4=\sqrt{I_0}\frac{e^{i\frac{\pi}{4\lambda}(-u+v)}}{16}sinc(\frac{\pi u}{4\lambda})sinc(\frac{\pi v}{4\lambda})
$$
$$
U_5=\sqrt{I_0}\frac{e^{i\frac{\pi}{4\lambda}(-3u-v)}}{16}sinc(\frac{\pi u}{4\lambda})sinc(\frac{\pi v}{4\lambda})
$$
We sum the individual contributions and find the intensity by taking the dot product of ##U## with its complex conjugate.
$$
U=U_1+U_2+U_3+U_4+U_5
$$
$$
I=U\cdot U^{*}
$$
$$
=\frac{I_0}{(16)^2}sinc(\frac{\pi u}{4\lambda})^2sinc(\frac{\pi v}{4\lambda})^2[5+4\cos(\frac{\pi}{2}(u+v))+2\cos(\frac{\pi}{2}(u+2v))+2\cos(\frac{\pi}{2}(2u+v))+2\cos(\frac{\pi}{2}(3u+2v))+2\cos(\frac{\pi}{2}(u))+2\cos(\frac{\pi}{2}(v))+2\cos(\frac{\pi}{2}(u-v))2\cos(\frac{\pi}{2}(4u))+2\cos(\frac{\pi}{2}(4u+2v))]
$$
We evaluate this at the center of the cell to find ##I=I_0\frac{(5)^2}{(16)^2}##.