Is N Always in the Center of G or Does It Intersect H or K Nontrivially?

Click For Summary
SUMMARY

The discussion centers on the relationship between normal subgroups N, H, and K of a group G, where G is expressed as the internal direct product G = H × K. Participants conclude that N must either lie in the center Z(G) of G or intersect with either H or K nontrivially. The proof involves demonstrating that if N intersects trivially with both H and K, then elements of N commute with elements of G, thus establishing N ⊆ Z(G). The conversation also explores examples of nonabelian groups and the implications of subgroup properties.

PREREQUISITES
  • Understanding of group theory concepts, specifically normal subgroups.
  • Familiarity with internal direct products in group theory.
  • Knowledge of the center of a group and its properties.
  • Experience with isomorphisms and subgroup intersections.
NEXT STEPS
  • Study the properties of normal subgroups in group theory.
  • Learn about the structure and examples of nonabelian groups, such as symmetric groups S_n and dihedral groups D_n.
  • Investigate the concept of the center of a group and its significance in group structure.
  • Explore the implications of internal direct products and weak direct products in group theory.
USEFUL FOR

Mathematicians, particularly those specializing in abstract algebra, group theorists, and students studying advanced group theory concepts will benefit from this discussion.

Bashyboy
Messages
1,419
Reaction score
5

Homework Statement


Let ##H, K, N## be nontrivial normal subgroups of a group ##G## and suppose that ##G = H \times K##. Prove that ##N## is in the center of ##G## or ##N## intersects one of ##H,K## nontrivially

Homework Equations

The Attempt at a Solution



I presume that ##G = H \times K## means that ##G## is the internal direct product of the subgroups of ##H## and ##K##. So ##G## being the internal direct product of ##G## means that ##G= \langle H \cup K \rangle## with ##H \cap K = \{e\}##; and since at least one of the two subgroups is normal, ##\langle H \cup K \rangle = HK## (Is this also called the internal weak direct product?) Now, suppose that ##N## intersects ##H## and ##K## trivially. Then ##nh = hn## for all ##n \in N## and ##h \in H## ; and a similar commutation relation holds for ##K##. Then given ##g \in HK##, which means ##g = hk## for some ##h \in H## and ##k \in K##, we have that ##nhk = hkn##, thereby showing ##n \in Z(G)##.

Does this sound right?
 
Physics news on Phys.org
Bashyboy said:

Homework Statement


Let ##H, K, N## be nontrivial normal subgroups of a group ##G## and suppose that ##G = H \times K##. Prove that ##N## is in the center of ##G## or ##N## intersects one of ##H,K## nontrivially

Homework Equations

The Attempt at a Solution



I presume that ##G = H \times K## means that ##G## is the internal direct product of the subgroups of ##H## and ##K##. So ##G## being the internal direct product of ##G## means that ##G= \langle H \cup K \rangle## with ##H \cap K = \{e\}##; and since at least one of the two subgroups is normal, ...
Aren't all already given normal?
... ##\langle H \cup K \rangle = HK## (Is this also called the internal weak direct product?) Now, suppose that ##N## intersects ##H## and ##K## trivially.
Which means, that we have to show ##N \subseteq Z(G)## or equivalently ##nh=hn## and ##nk=kn##
Then
is what has to be shown. Simply writing it doesn't show anything. Why does it have to be the case? All we know for sure is ##nh=h'n##.
##nh = hn## for all ##n \in N## and ##h \in H## ; and a similar commutation relation holds for ##K##. Then given ##g \in HK##, which means ##g = hk## for some ##h \in H## and ##k \in K##, we have that ##nhk = hkn##, thereby showing ##n \in Z(G)##.

Does this sound right?
 
Sorry. I forgot to mention that I am using the following: if ##K## and ##N## are normal in ##G## and ##K \cap N = \{e\}##, then ##nk=kn## for all ##k \in K## and ##n \in N##. This I have already proven.
 
I'm pretty certain the above is right. The second part of the problem is to find a nonabelian ##G## and normal subgroups ##N,H,K## such that ##G = H \times K## and ##N## contains the center. At first I thought about ##D_8##, but the orders of the normal subgroups don't work out. I could a hint as to where I should be looking for an example. The only nonabelian groups I know of at this point are ##S_n##, ##D_{2n}##, and the quaternions.
 
Why don't simply choose ##N=K=Z(G)## and any group ##H## with ##Z(H)=1\,##?
 
fresh_42 said:
Why don't simply choose ##N=K=Z(G)## and any group ##H## with ##Z(H)=1\,##?

This is something I had in mind, but I didn't know what specific groups to look at. By the way, ##H## can't be any group; It has to be a normal subgroup of ##G##, right?
 
Ah I think I see what you are aiming at. Also, in order to dispel a possible misconception, when I write ##G = H \times K##, this denotes the internal direct product (not a cartesian product); I seem to have adopted this horrible notation from Hungerford (the book I am working through). In fact, I am going to set up a notational convention right now: ##H \times K## will denote the standard direct (cartesian) product of ##H## and ##K##, while ##H \times_w K## will denote the internal weak direct product (i.e., ##G=HK## and ##H,K## are normal subgroups with trivial intersection). I hope I am using all these terms correctly.

I believe you are aiming at the following: If ##G \simeq G_1 \times G_2##, then there exist normal subgroups ##H,K## of ##G## such that ##G = H \times_w K## and ##G_1 \simeq H## and ##G_2 \simeq K##. Here is my proof:

Let ##f : G_1 \times G_2 \to G## be an isomorphism. Note that ##G_1 \times \{e_2\}## and ##\{e_1\} \times G_2## are normal subgroups of ##G_1 \times G_2##, and therefore ##H := f(G_1 \times \{e_2\})## and ##K := f(\{e_1\} \times G_2)## are normal subgroups of ##G##. Suppose that ##g \in H \cap K##. Then ##f(g_1,e_2) = g = f(e_1,g_2)## and injectivity of ##f## implies ##g_1 = e_1## and ##g_2 = e_2##, whence it follows ##g=e##. Now suppose that ##g \in G##. Then for some ##(g_1,g_2) \in G_1 \times G_2##, ##g =f(g_1,g_2) = f(g_1,e_2) f(e_1,g_2) \in HK##. This proves that ##G = H \times_w K##.

So, I could choose ##G## to be equal to ##\Bbb{Z}_n \times S_n##, and a fortiori ##G## would be isomorphic to ##\Bbb{Z}_n \times S_n##. By the above, there would be normal subgroups ##H## and ##K## that intersect trivially and satisfy the isomorphism conditions and ##G = H \times_w K##. Choose ##N = H##. Then clearly ##N## contains ##Z(G)##, since ##Z(G) = Z(\Bbb{Z}_n \times S_n) = \Bbb{Z}_n \times \{e\} \simeq H## (or would it be ##\Bbb{Z}_n \times \{e\} = H##? Slightly confused).
 
Bashyboy said:
This is something I had in mind, but I didn't know what specific groups to look at. By the way, ##H## can't be any group; It has to be a normal subgroup of ##G##, right?
No, because if you have a direct product, then ##Z(H \times K) = Z(H) \times Z(K)##, so to make things easy, we can choose an Abelian group ##K=N## and one without center ##H##, a simple one doesn't need argumentation.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
5
Views
7K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
6K