Intersection of a function f(x,y) with a plane

Click For Summary
SUMMARY

The discussion centers on the intersection of a function f(x,y) with the plane defined by z=0. The mathematical representation of this intersection is expressed as $$2(x-a)+(y-b)+0z=0$$, which describes a plane in 3D space. The derived functions from this intersection are $$g(x)=f(x,2a+b-2x)$$ and $$h(y)=f(\frac{b+2a-y}{2},y)$$, which are essential for calculating slopes at points g(a) and h(b). The conversation also touches on the implications of using ##\Delta x## and ##\Delta y## in derivatives, clarifying their roles in first and second derivatives.

PREREQUISITES
  • Understanding of 3D geometry and planes
  • Familiarity with partial derivatives and directional derivatives
  • Knowledge of function notation and limits
  • Basic calculus concepts, including slopes and derivatives
NEXT STEPS
  • Study the concept of directional derivatives in multivariable calculus
  • Explore the geometric interpretation of partial derivatives
  • Learn about the application of the gradient in optimization problems
  • Investigate the relationship between first and second derivatives in multivariable functions
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus and multivariable functions, as well as educators looking to enhance their understanding of geometric interpretations in calculus.

Poetria
Messages
267
Reaction score
42
Homework Statement
Which of the following expressions best approximates the slope of the function created by intersecting the graph of the function z=f(x,y) with a plane 2(x-a)+(y-b)=0 at the point (a,b)
Relevant Equations
2(x-a)+(y-b)=0 is a line
y=2a+b-2x
at the point (a,b) b=2a+b-2a
Since z=0, the only variable that counts is x.
So the solution would be:

$$\frac {f \left(a + \Delta\ x, b \right) - f(a,b)} {\left( \Delta\ x\right)}$$
 
Physics news on Phys.org
2(x-a)+(y-b)=0 is a line in 2D space but in 3D space it becomes a plane. You can write it as $$2(x-a)+(y-b)+0z=0$$ to see it mathematically as the general equation of a plane in 3Dimensional space is ##Ax+By+Cz+D=0##.

To see it intuitively this plane contains the line 2(x-a)+(y-b)=0 at the xy-plane (where z=0) but it also contains all the parallel lines of the points that have positive or negative z (all the lines that are above and below the basic line 2(x-a)+(y-b)=0).

The function that is "created " by the above intersection is the function $$g(x)=f(x,2a+b-2x)$$, or $$h(y)=f(\frac{b+2a-y}{2},y)$$ so you should look for options that give the slope at ##g(a)## or ##h(b)##.
 
  • Love
Likes   Reactions: Poetria
Sorry I had a typo in post #2 in the expression of ##h(y)## I think now it is fixed.
 
  • Like
Likes   Reactions: Poetria
Actually I might be wrong in what I say in post #2 about which are the functions that are created by the intersection. Is this question from the theory of directional derivatives?
 
I haven't learned anything about directional derivatives yet. It is the question about geometry of partial derivatives. But I think you are right. It does make sense. The option with g(x)

$$\frac {f \left(a + x - a, b - 2 x + 2 a \right) - f \left( a, b\right)} {x - a}$$$$\frac {f \left(a + \Delta\ x, b - 2 \Delta x \right) - f \left( a, b\right)} {\Delta x}$$
 
Last edited:
  • Like
Likes   Reactions: Delta2
I will try to do the same with h(y).
 
  • Like
Likes   Reactions: Delta2
$$\frac {f\left(\frac {2 a + b - \left( y - b\right)} {2}, b + y - b \right) - f\left(a, b \right)} {\left(y - b\right)}$$

Of course, y-b is ##\Delta y##

This is a multi-choice exercise and there is no option with ##\Delta y## as the one above. I was wondering why the option with ##\Delta x## in the denominator was supposed to be correct and not e.g. ##\Delta x \Delta y##. Now I understand it. :)
By the way ##\Delta x \Delta y## would mean the second derivative if I understand it correctly.
Tricky stuff.
 
Last edited:
  • Like
Likes   Reactions: Delta2
Poetria said:
$$\frac {\frac {2 a + b - \left( y - b\right)} {2} - f\left(a, b \right)} {\left(y - b\right)}$$

Of course, y-b is ##\Delta y##

This is a multi-choice exercise and there is no option with ##\Delta y## as the one above. I was wondering why the option with ##\Delta x## in the denominator was supposed to be correct and not e.g. ##\Delta x \Delta y##. Now I understand it. :)
By the way ##\Delta x \Delta y## would mean the second derivative if I understand it correctly.
Tricky stuff.
not sure what you saying at the top, your expression is incomplete/has some typos i think, but yes if you were given an expression with ##\Delta x \Delta y## in the denominator that would come from the approximation expression for the second mixed partial derivative ##\frac{\partial^2 f}{\partial x\partial y}## or ##\frac{\partial ^2 f}{\partial y\partial x}## (those 2 are equal if f is continuous btw).
 
  • Like
Likes   Reactions: Poetria
I meant the slope at h(b) you have suggested to find. Have I made a mistake?
 
Last edited:
  • #10
ehm I think you mean $$f(\frac{2a+b-\Delta y}{2},b+\Delta y)$$ there instead of just $$\frac{2a+b-\Delta y}{2}$$
 
  • Like
Likes   Reactions: Poetria
  • #11
Silly me. :(
 
  • Haha
Likes   Reactions: Delta2

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K