LaTeX Introducing LaTeX Math Typesetting

Click For Summary
Physics Forums has integrated LaTeX mathematical typesetting into its platform, allowing users to create visually appealing mathematical expressions using markup similar to HTML. Users can include LaTeX graphics in posts by wrapping their code in [tex] or [itex] tags for display or inline formatting, respectively. A PDF guide with essential LaTeX commands and symbols is available, along with links to additional resources. The community is encouraged to experiment with the system and share examples, while also being mindful of server load when generating graphics. This addition aims to enhance the clarity and professionalism of mathematical discussions on the forum.
  • #721
VietDao29 said:
This is driving me crazy... :cry: Does anyone know why there's a text 0, 60 in the third picture? I didn't put any text there, it just appeared mysteriously... :frown:
Your \begin{picture} command has curly brackets after it {60,60} instead of round (60,60)
 
Physics news on Phys.org
  • #722
J77 said:
Your \begin{picture} command has curly brackets after it {60,60} instead of round (60,60)
Ah, yes, thanks a lot. :blushing: Sometimes, I just mess up the round bracket, and the curly ones. :smile:
 
  • #723
pavadrin said:
\frac{\pi ^2^2^2}{\log \cos \sin \tan
You forgot to type in the '}' at the end.
\frac{\pi ^2^2^2}{\log \cos \sin \tan }
 
  • #724
I'm having trouble trying to write mass times specific heat times delta T subscript copper to represent the internal energy of a piece of copper. This was one of my many unsuccessful attempts:

mc /Delta T_{copper}

How do you do it? :frown:

Testing: mc \partial_{x}. I hope the mc part appears. (Edit: Guess it didn't)
 
Last edited:
  • #725
Water said:
I'm having trouble trying to write mass times specific heat times delta T subscript copper to represent the internal energy of a piece of copper. This was one of my many unsuccessful attempts:

mc /Delta T_{copper}

How do you do it? :frown:

Use \Delta
mc \Delta T_{copper} <---click me
 
  • #726
Feynman Diagram

Does anyone know how to use the Feynman diagram package in LaTex??

My Miktex has this "feynmf macros", how do I use it??
 
  • #727
I am wanting to preview a post containing tex. But the preview tells me that it is being generated, and when I refresh to see the result, it then restarts the generation process.

I think.

Is there any way I can preview my tex before posting?

Thanks -- Sylas.

PS. I was trying to enter this:

<br /> \frac{\partial f}{\partial x} = \gamma<br /> \\<br /> \frac{\partial f}{\partial t} = \omega c<br /> \\<br /> \frac{\partial g}{\partial x} = \omega/c<br /> \\<br /> \frac{\partial g}{\partial t} = \gamma<br /> \\<br /> \gamma = ...<br />
 
Last edited:
  • #728
sylas said:
I am wanting to preview a post containing tex. But the preview tells me that it is being generated, and when I refresh to see the result, it then restarts the generation process.

I think.

Is there any way I can preview my tex before posting?

Thanks -- Sylas.

Unfortunately, it seems that wonderful feature was broken in an upgrade.
 
  • #729
here is inline text x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}
and normal latexx=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

lately the computer hasn't differentiated.
 
  • #730
Ooh, look! itex uses littler font but still the white background!:biggrin:
 
  • #732
oen_maclaude said:
i guess there is something wrong in the pdf file in
https://www.physicsforums.com/misc/howtolatex.pdf

it should be /tex not \tex

This post rather befuddled me, b/c I learned from that file and never had a problem...
Then I saw it--
although [ t e x ]...[ / t e x ] does appear twice., [ t e x ]...[ \ t e x ] appears once.
It's all in what you look for:smile: !

BTW, can anyone explain the itex \frac{7 days}{1 week} vs tex \frac{7 days}{1 week} deal?
 
Last edited:
  • #733
mbrmbrg said:
This post rather befuddled me, b/c I learned from that file and never had a problem...
Then I saw it--
although [ t e x ]...[ / t e x ] does appear twice., [ t e x ]...[ \ t e x ] appears once.
It's all in what you look for:smile: !

BTW, can anyone explain the itex \frac{7 days}{1 week} vs tex \frac{7 days}{1 week} deal?

i guess it is better for articles to be consistent. just a thought. Anyway, thanks!
 
  • #734
oen_maclaude said:
i guess it is better for articles to be consistent. just a thought. Anyway, thanks!

When you write articles, reports and such, you take much more advantage of latex than the forum does. here its just a mean to write readable mathematics. So what 'itex' tries to do is to mimic standard inline math ($ $) and 'tex' looks more like displaystyle math (\[ \]).
 
  • #735
Hm. I thought itex was supposed to get rid of the white background, possibly w/o shrinking the font size. Then again, if it's to make it fit the line, of course a fraction has to be shrunk (shrunken?).
 
  • #736
spot the error.

hi, I am using texniccenter, and i would appreciate if someone could sopt my errors in my code, and help me correct it.
here's the code:
\begin{normalsize}
\begin{document}
\begin{equation}
\normalsize
m\int\limits_{x_1}^{x_2}
\frac{dv}{dt}dx=\int\limits_'{x_1}^{x_2}F(x)dx
\nonumber\\
dx=\frac{dx}{dt}dt=vdt
\nonumber\\
m\int\limits_{x_1}^{x_2}\frac{dv}{dt}dx=m\int\limits_{t_1}^{t_2}\frac{dv}{dt}vdt
\nonumber\\
=\int\limits_{t_1}^{t_2}\frac(d}{dt}
(\frac{1}{2}v^2)dt=\frac{1}{2}m[v_2^2-v_1^2]
\end{equation}
\end{document}
\end{normalsize}
 
  • #737
loop quantum gravity said:
hi, I am using texniccenter, and i would appreciate if someone could sopt my errors in my code, and help me correct it.
here's the code:
\begin{normalsize}
\begin{document}
\begin{equation}
\normalsize
m\int\limits_{x_1}^{x_2}
\frac{dv}{dt}dx=\int\limits_'{x_1}^{x_2}F(x)dx
\nonumber\\
dx=\frac{dx}{dt}dt=vdt
\nonumber\\
m\int\limits_{x_1}^{x_2}\frac{dv}{dt}dx=m\int\limits_{t_1}^{t_2}\frac{dv}{dt}vdt
\nonumber\\
=\int\limits_{t_1}^{t_2}\frac(d}{dt}
(\frac{1}{2}v^2)dt=\frac{1}{2}m[v_2^2-v_1^2]
\end{equation}
\end{document}
\end{normalsize}

It does not matter what program you used. If it will not compile it will not compile no matter the program you are useing.

First of all, *never* put any enviroments around, or outside your main document -- just doesn't work. \normalsize also does nothing for you in a math enviroment. a few other errors where in how you used \limits and \frac{}{}. The following compiles nicely

Code:
\documentclass{article}

%\begin{normalsize}
\begin{document}
\begin{equation}
%\normalsize
m\int\limits_{x_1}^{x_2}
\frac{dv}{dt}dx=\int\limits_{x_1}^{x_2}F(x)dx %removed '
\nonumber\\
dx=\frac{dx}{dt}dt=vdt
\nonumber\\
m\int\limits_{x_1}^{x_2}\frac{dv}{dt}dx=m\int\limits_{t_1}^{t_2}\frac{dv}{dt}vdt
\nonumber\\
=\int\limits_{t_1}^{t_2}\frac{d}{dt} %corrected ( => {
(\frac{1}{2}v^2)dt=\frac{1}{2}m[v_2^2-v_1^2]
\end{equation}
\end{document}
%\end{normalsize}
 
  • #738
\oint E\cdot dA = \frac{Q_{enc}}{\epsilon_0}

Yahoo! Finally produced Gauss' Law in latex!
 
Last edited:
  • #739
Latex Transparency fixed in IE7 :approve:
 
  • #740
VietDao29 said:
The circle command is too small, since the diameter can only be 14 mm. I just wonder if there is a way to magnify the picture? Or to draw a larger circle?
<br /> \]<br /> \unitlength 0.02mm<br /> \begin{picture}(4000,4000)(0,0)<br /> \linethickness{3pt}<br /> \textcolor{red}{<br /> \qbezier( 4000, 2000)( 3996, 2125)( 3984, 2250)<br /> \qbezier( 3984, 2250)( 3964, 2374)( 3937, 2497)<br /> \qbezier( 3937, 2497)( 3902, 2618)( 3859, 2736)<br /> \qbezier( 3859, 2736)( 3809, 2851)( 3752, 2963)<br /> \qbezier( 3752, 2963)( 3688, 3071)( 3618, 3175)<br /> \qbezier( 3618, 3175)( 3541, 3274)( 3457, 3369)<br /> \qbezier( 3457, 3369)( 3369, 3457)( 3274, 3541)<br /> \qbezier( 3274, 3541)( 3175, 3618)( 3071, 3688)<br /> \qbezier( 3071, 3688)( 2963, 3752)( 2851, 3809)<br /> \qbezier( 2851, 3809)( 2736, 3859)( 2618, 3902)<br /> \qbezier( 2618, 3902)( 2497, 3937)( 2374, 3964)<br /> \qbezier( 2374, 3964)( 2250, 3984)( 2125, 3996)<br /> \qbezier( 2125, 3996)( 1999, 4000)( 1874, 3996)<br /> \qbezier( 1874, 3996)( 1749, 3984)( 1625, 3964)<br /> \qbezier( 1625, 3964)( 1502, 3937)( 1381, 3902)<br /> \qbezier( 1381, 3902)( 1263, 3859)( 1148, 3809)<br /> \qbezier( 1148, 3809)( 1036, 3752)( 928, 3688)<br /> \qbezier( 928, 3688)( 824, 3618)( 725, 3541)<br /> \qbezier( 725, 3541)( 630, 3457)( 542, 3369)<br /> \qbezier( 542, 3369)( 458, 3274)( 381, 3175)<br /> \qbezier( 381, 3175)( 311, 3071)( 247, 2963)<br /> \qbezier( 247, 2963)( 190, 2851)( 140, 2736)<br /> \qbezier( 140, 2736)( 97, 2618)( 62, 2497)<br /> \qbezier( 62, 2497)( 35, 2374)( 15, 2250)<br /> \qbezier( 15, 2250)( 3, 2125)( 0, 1999)<br /> \qbezier( 0, 1999)( 3, 1874)( 15, 1749)<br /> \qbezier( 15, 1749)( 35, 1625)( 62, 1502)<br /> \qbezier( 62, 1502)( 97, 1381)( 140, 1263)<br /> \qbezier( 140, 1263)( 190, 1148)( 247, 1036)<br /> \qbezier( 247, 1036)( 311, 928)( 381, 824)<br /> \qbezier( 381, 824)( 458, 725)( 542, 630)<br /> \qbezier( 542, 630)( 630, 542)( 725, 458)<br /> \qbezier( 725, 458)( 824, 381)( 928, 311)<br /> \qbezier( 928, 311)( 1036, 247)( 1148, 190)<br /> \qbezier( 1148, 190)( 1263, 140)( 1381, 97)<br /> \qbezier( 1381, 97)( 1502, 62)( 1625, 35)<br /> \qbezier( 1625, 35)( 1749, 15)( 1874, 3)<br /> \qbezier( 1874, 3)( 1999, 0)( 2125, 3)<br /> \qbezier( 2125, 3)( 2250, 15)( 2374, 35)<br /> \qbezier( 2374, 35)( 2497, 62)( 2618, 97)<br /> \qbezier( 2618, 97)( 2736, 140)( 2851, 190)<br /> \qbezier( 2851, 190)( 2963, 247)( 3071, 311)<br /> \qbezier( 3071, 311)( 3175, 381)( 3274, 458)<br /> \qbezier( 3274, 458)( 3369, 542)( 3457, 630)<br /> \qbezier( 3457, 630)( 3541, 725)( 3618, 824)<br /> \qbezier( 3618, 824)( 3688, 928)( 3752, 1036)<br /> \qbezier( 3752, 1036)( 3809, 1148)( 3859, 1263)<br /> \qbezier( 3859, 1263)( 3902, 1381)( 3937, 1502)<br /> \qbezier( 3937, 1502)( 3964, 1625)( 3984, 1749)<br /> \qbezier( 3984, 1749)( 3996, 1874)( 4000, 1999)<br /> }<br /> \end{picture}<br /> \[<br />

<br /> \]<br /> \unitlength 0.02mm<br /> \begin{picture}(4000,4000)(0,0)<br /> \linethickness{3pt}<br /> \textcolor{blue}{<br /> \qbezier( 4000, 2000)( 3996, 2125)( 3984, 2250)<br /> \qbezier( 3984, 2250)( 3964, 2374)( 3937, 2497)<br /> \qbezier( 3937, 2497)( 3902, 2618)( 3859, 2736)<br /> \qbezier( 3859, 2736)( 3809, 2851)( 3752, 2963)<br /> \qbezier( 3752, 2963)( 3688, 3071)( 3618, 3175)<br /> \qbezier( 3618, 3175)( 3541, 3274)( 3457, 3369)<br /> \qbezier( 3457, 3369)( 3369, 3457)( 3274, 3541)<br /> \qbezier( 3274, 3541)( 3175, 3618)( 3071, 3688)<br /> \qbezier( 3071, 3688)( 2963, 3752)( 2851, 3809)<br /> \qbezier( 2851, 3809)( 2736, 3859)( 2618, 3902)<br /> \qbezier( 2618, 3902)( 2497, 3937)( 2374, 3964)<br /> \qbezier( 2374, 3964)( 2250, 3984)( 2125, 3996)<br /> \qbezier( 2125, 3996)( 1999, 4000)( 1874, 3996)<br /> \qbezier( 1874, 3996)( 1749, 3984)( 1625, 3964)<br /> \qbezier( 1625, 3964)( 1502, 3937)( 1381, 3902)<br /> \qbezier( 1381, 3902)( 1263, 3859)( 1148, 3809)<br /> \qbezier( 1148, 3809)( 1036, 3752)( 928, 3688)<br /> \qbezier( 928, 3688)( 824, 3618)( 725, 3541)<br /> \qbezier( 725, 3541)( 630, 3457)( 542, 3369)<br /> \qbezier( 542, 3369)( 458, 3274)( 381, 3175)<br /> \qbezier( 381, 3175)( 311, 3071)( 247, 2963)<br /> \qbezier( 247, 2963)( 190, 2851)( 140, 2736)<br /> \qbezier( 140, 2736)( 97, 2618)( 62, 2497)<br /> \qbezier( 62, 2497)( 35, 2374)( 15, 2250)<br /> \qbezier( 15, 2250)( 3, 2125)( 0, 1999)<br /> \qbezier( 0, 1999)( 3, 1874)( 15, 1749)<br /> \qbezier( 15, 1749)( 35, 1625)( 62, 1502)<br /> \qbezier( 62, 1502)( 97, 1381)( 140, 1263)<br /> \qbezier( 140, 1263)( 190, 1148)( 247, 1036)<br /> \qbezier( 247, 1036)( 311, 928)( 381, 824)<br /> \qbezier( 381, 824)( 458, 725)( 542, 630)<br /> \qbezier( 542, 630)( 630, 542)( 725, 458)<br /> \qbezier( 725, 458)( 824, 381)( 928, 311)<br /> \qbezier( 928, 311)( 1036, 247)( 1148, 190)<br /> \qbezier( 1148, 190)( 1263, 140)( 1381, 97)<br /> \qbezier( 1381, 97)( 1502, 62)( 1625, 35)<br /> \qbezier( 1625, 35)( 1749, 15)( 1874, 3)<br /> \qbezier( 1874, 3)( 1999, 0)( 2125, 3)<br /> \qbezier( 2125, 3)( 2250, 15)( 2374, 35)<br /> \qbezier( 2374, 35)( 2497, 62)( 2618, 97)<br /> \qbezier( 2618, 97)( 2736, 140)( 2851, 190)<br /> \qbezier( 2851, 190)( 2963, 247)( 3071, 311)<br /> \qbezier( 3071, 311)( 3175, 381)( 3274, 458)<br /> \qbezier( 3274, 458)( 3369, 542)( 3457, 630)<br /> \qbezier( 3457, 630)( 3541, 725)( 3618, 824)<br /> \qbezier( 3618, 824)( 3688, 928)( 3752, 1036)<br /> \qbezier( 3752, 1036)( 3809, 1148)( 3859, 1263)<br /> \qbezier( 3859, 1263)( 3902, 1381)( 3937, 1502)<br /> \qbezier( 3937, 1502)( 3964, 1625)( 3984, 1749)<br /> \qbezier( 3984, 1749)( 3996, 1874)( 4000, 1999)<br /> }<br /> <br /> \thicklines<br /> {\color{red}\put(2000, 2000){\vector(1, 0){2000}}}<br /> {\color{orange}\put(2000, 2000){\vector(4, 1){1000}}}<br /> {\color{yellow}\put(2000, 2000){\vector(3, 1){1500}}}<br /> {\color{green}\put(2000, 2000){\vector(2, 1){2000}}}<br /> {\color{blue}\put(2000, 2000){\vector(1, 2){500}}}<br /> \thicklines<br /> \put(2000, 2000){\vector(-4, 1){2000}}<br /> \put(2000, 2000){\vector(-1, 4){500}}<br /> \thinlines<br /> \put(2000, 2000){\vector(-1, -1){500}}<br /> \put(2000, 2000){\vector(-1, -4){500}}<br /> <br /> \end{picture}<br /> \[<br />
 
Last edited:
  • #741
\alpha^2\sin(x)
 
  • #742
(E_0-E_1+mc^2)^2=E^2_0+E^2_1 -2E_0E_1cos\theta +(mc^2)^2
E^2_0- 2E_0E_1 +2E_0mc^2+E^2_1-2E_1mc^2 +m^2c^4=E^2_0+E^2_1 -2E_0E_1cos\theta +(mc^2)^2
2E_0mc^2-2E_1mc^2=-2E_0E_1cos\theta+2E_0E_1
2mc^2(E_0-E_1)=2E_0E_1(1-cos\theta)

E=E_0-E_1+mc^2 c^2p^2=E^2_0+E^2_1 -2E_0E_1cos\theta
E^2=c^2p^2+(mc^2)^2
 
Last edited:
  • #743
mc^2(\frac{hc}{\lambda_0}-\frac{hc}{\lambda_1})=\frac{hc}{\lambda_0}\frac{hc}{\lambda_1}(1-cos\theta)
hmc^3(\frac{1}{\lambda_0}-\frac{1}{\lambda_1})=\frac{h^2c^2}{\lambda_0\lambda_1}(1-cos\theta)
\lambda_0\lambda_1(\frac{1}{\lambda_0}-\frac{1}{\lambda_1})=\frac{h^2c^2}{hmc^3}(1-cos\theta)
\lambda_1-\lambda_0=\frac{h}{mc}(1-cos\theta)

E_0=hf_0 f_0=\frac{c}{\lambda_0}
E_1=hf_1 f_1=\frac{c}{\lambda_1}
 
Last edited:
  • #744
HalfManHalfAmazing said:
\oint E\cdot dA = \frac{Q_{enc}}{\epsilon_0}

Yahoo! Finally produced Gauss' Law in latex!

This would be better :biggrin: :

\oint_\mathcal{S} \mathbf{E} \cdot d\mathbf{A} = \frac{Q_\textrm{enc}}{\epsilon_0}​
 
Last edited:
  • #745
Hi all,

Here is my question:

In the E&gt;U_0 potential barrier, there should be no reflected wave when the incident wave is at one of the transmisson resonances. Assuming that a beam of particles is incident at the first transmission resonance, E=U_0+(\frac{\pi^2 h^2}{2mL^2}), combine the continuity conditions to show that B=0. Here are the continuity conditions:

1st A+B=C+D

2nd k(A- B)=k^{&#039;}(C-D)

3rd Ce^{ik^{&#039;}L}+De^{-ik^{&#039;}L}=Fe^{ikL}

4th k^{&#039;}(Ce^{ik^{&#039;}L}-De^{-ik^{&#039;}L})=kFe^{ikL}

A couple more equations that we already know are k=\sqrt{\frac{2mE}{h^2}} and k^&#039;=\sqrt{\frac{2m(E-U_0)}{h^2}

Here is my attempted solution:

I divided the 4th equation by K and then set equation 3 and 4 equal to each other. I then used the new equation to solve for C in terms of D giving me

C=De^{-2i \pi}\frac{k^{&#039;}+k}{k^{&#039;}-K} where I substituted \frac{\pi}{L} in for k'.

I substituted this result into the first equation to now give me

A+B={De^{-2i \pi}\frac{k^{&#039;}+k}{k^{&#039;}-K} + D.

Solving for D gives me

\frac{A+B}{e^{-2i \pi}\frac{k^{&#039;}+k}{k^{&#039;}-K} + 1} = D

Now, plugging in our solutions for D and C into the 2nd equation

\frac{(A+B)e^{-2i \pi}\frac{k^{&#039;}+k}{k^{&#039;}-K}}{e^{-2i \pi}\frac{k^{&#039;}+k}{k^{&#039;}-K}+1}-\frac{A+B}{e^{-2i \pi}\frac{k^{&#039;}+k}{k^{&#039;}-K}+1}=\frac{k}{k^{&#039;}}(A-B})

At this point, it seems impossible to simplify the equation to a point where it is obvious that B = 0. Am I on the right track or is there an easier way?
 
Last edited:
  • #746
17(1-\frac{1}{17^2})^\frac{1}{2}

Does anyone know of a website that allows me to use tex code and generate latex graphics, that isn't necessarily part of a forum like this one?

BTW, the guy who coded LaTeX into this forum is a bloody wizard.

EDIT: God! LaTeX is amazing! I've been checking the examples in this thread... what an invention!
 
Last edited:
  • #747
Found one here: http://at.org/~cola/tex2img/index.php

(sorry for double post, I can't find the EDIT button...)
 
Last edited by a moderator:
  • #748
\frac{x-vt}{\sqrt{1-\frac{v^2}{c^2}}}
\frac{x-vt}{\sqrt{2}}
\sqrt{2}
 
Last edited:
  • #749
For testing please use:
http://at.org/~cola/tex2img/index.php
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K