Introduction of antibiotic resistance gene to a bacteria

Click For Summary
SUMMARY

The introduction of antibiotic resistance genes into bacteria is a common practice in molecular biology research, primarily for the purpose of screening modified organisms. By combining a gene of interest with an antibiotic resistance gene, researchers can ensure that only bacteria that have successfully taken up the modification survive when exposed to the antibiotic. This method enhances the reliability of experimental data by eliminating unmodified bacteria from the sample. The process is typically facilitated through the use of plasmids, which allow for the easy insertion of the gene of interest alongside the antibiotic resistance gene.

PREREQUISITES
  • Understanding of molecular biology techniques, specifically gene transfection.
  • Familiarity with plasmid vectors and their role in genetic modification.
  • Knowledge of antibiotic resistance mechanisms in bacteria.
  • Basic principles of bacterial culture and monoclonal selection.
NEXT STEPS
  • Research the use of plasmids in genetic engineering, focusing on their structure and function.
  • Learn about selectable markers and their application in molecular biology.
  • Explore the mechanisms of antibiotic resistance in various bacterial species.
  • Investigate the ethical implications and potential applications of antibiotic resistance in biotechnology.
USEFUL FOR

Researchers in molecular biology, genetic engineers, microbiologists, and anyone involved in antibiotic resistance studies or genetic modification of bacteria.

Rayanna
Messages
9
Reaction score
1
Why would anyone like to intoduce a antibiotic gene in a bacteria if it will make it resistant to antibiotics which is not of any advantages to humans?
 
  • Like
Likes   Reactions: Xena Dean
Biology news on Phys.org
It's a common tool in molecular biology research that allows a scientist to screen out organisms they aren't interested in. Let's say that you had a sample of bacteria and you wanted to test a modification to their genome, you make the modified gene and transfect your cells. Not all of them are going to successfully take in the gene but you don't know which ones did. If you then run tests on that population you can't be sure if your results are genuine. The data you're getting may be from the unmodified population, or the unmodified population may be having a positive or negative effect on the response you're trying to measure. To screen out any bacteria that don't take up the modification you can combined your gene of interest with an antibiotic resistance gene. Then you add that antibiotic to the sample. Any bacteria that have been modified will survive, but all the unmodified bacteria will die. This leaves you with a sample that contains only modified organisms meaning that you can be sure that your data is of good quality.
 
  • Like
Likes   Reactions: Xena Dean, BillTre, jim mcnamara and 1 other person
Ryan_m_b said:
It's a common tool in molecular biology research that allows a scientist to screen out organisms they aren't interested in. Let's say that you had a sample of bacteria and you wanted to test a modification to their genome, you make the modified gene and transfect your cells. Not all of them are going to successfully take in the gene but you don't know which ones did. If you then run tests on that population you can't be sure if your results are genuine. The data you're getting may be from the unmodified population, or the unmodified population may be having a positive or negative effect on the response you're trying to measure. To screen out any bacteria that don't take up the modification you can combined your gene of interest with an antibiotic resistance gene. Then you add that antibiotic to the sample. Any bacteria that have been modified will survive, but all the unmodified bacteria will die. This leaves you with a sample that contains only modified organisms meaning that you can be sure that your data is of good quality.
Is it easy to combine our gene of interest to antibiotic resistance gene?How can we be so sure that our gene of interest is linked with the antibiotic resistance gene and in the next generation of host bacteria both of our gene of interest and antibiotic resistance gene is transferred?
 
Let me give you an analogy. Imagine you had a pretend population of rats some few of which could eat food high in Arsenic and thrive. So you feed all your rats in a giant cage food with lots of arsenic. Come back some weeks later, open the cage door, and the rats that come out of the cage all have the trait.

Bacteria can do this in a day because they can double their populations in very short time spans.

I think you have the assumption that you may get a species mix of bacteria, some of the original species you do not care about, and the exact species you do want. The fact that you can culture your bacterium of interest in the first place usually means you can create a monoculture. Many species of bacteria are very difficult or impossible to culture (with our current knowledge). We cannot do much of anything with them except, possibly, to find their DNA in samples from the wild.
 
  • Like
Likes   Reactions: Xena Dean and Rayanna
Rayanna said:
Is it easy to combine our gene of interest to antibiotic resistance gene?How can we be so sure that our gene of interest is linked with the antibiotic resistance gene and in the next generation of host bacteria both of our gene of interest and antibiotic resistance gene is transferred?

This is easily achieved through the use of plasmids: https://www.addgene.org/mol-bio-reference/plasmid-background/
 
  • Like
Likes   Reactions: jim mcnamara and Rayanna
Ygggdrasil said:
This is easily achieved through the use of plasmids: https://www.addgene.org/mol-bio-reference/plasmid-background/
So first the bacteria will take up the plasmd which has antibiotic gene and by using selectable marker we differentiate those bacterias who have plasmid and then in those bacteria's plasmid (which is of course the initial plasmid transferred to it) we insert our gene of interest .
 
Rayanna said:
Why would anyone like to intoduce a antibiotic gene in a bacteria if it will make it resistant to antibiotics which is not of any advantages to humans?
Germ warfare comes to mind. :frown:
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
6K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K