Intuition Behind Intermediate Axis Theorem in an Ideal Setting

Click For Summary

Discussion Overview

The discussion revolves around the Intermediate Axis Theorem, particularly focusing on the stability of rotation about the intermediate axis of a rigid body with distinct moments of inertia. Participants explore the implications of this theorem in ideal conditions, such as the absence of gravity and friction, and seek to understand the physical intuition behind the theorem's assertion of instability.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant questions whether the intermediate axis remains unstable under ideal conditions, suggesting that mathematical derivations imply instability but physical intuition seems to contradict this.
  • Another participant provides a summary request for intuitive explanations of the theorem and shares a video aimed at this goal.
  • A participant references a demonstration of the phenomenon but notes it does not directly address the original question regarding physical intuition.
  • There is a discussion about whether the rotation would still be unstable without initial deviations from the intermediate axis, with one participant suggesting it would be metastable, akin to a pencil balanced on its point.
  • Another participant emphasizes that in an idealized case of perfect rotation around the second axis, symmetry would prevent deviations, raising questions about the nature of instability.
  • Participants share additional resources, including videos and previous threads, discussing the challenges of understanding rigid body dynamics and proposing alternative perspectives using point masses and springs.

Areas of Agreement / Disagreement

Participants express uncertainty regarding the stability of the intermediate axis under ideal conditions, with no consensus reached on whether the rotation would remain unstable without initial deviations. Multiple viewpoints on the physical intuition and mathematical implications of the theorem are presented.

Contextual Notes

Some participants note that the discussions often assume initial deviations when explaining the theorem, which may not fully address the question of stability in the absence of such deviations. The mathematical derivations and physical interpretations are not universally agreed upon, highlighting the complexity of the topic.

deuteron
Messages
64
Reaction score
14
TL;DR
What is the physical intuition behind the intermediate axis theorem? Is the rotation about the intermediate axis unstable even under an ideal condition, if yes, physically why?
For a rigid body with three principal axis with distinct moments of inertia, would the principal axis with the intermediate moment of inertia still be unstable in ideal conditions, e.g. no gravity, no friction etc.? From the mathematical derivation I deduce that it should be unstable, since we make no assumptions about the external conditions to derive the intermediate axis theorem, but physically it makes no sense why the intermediate axis is unstable.

With mathematical derivation, I mean the following:
For ##I_1<I_2<I_3##, consider Euler's equations of rotation:
$$\begin{align}
I_1\dot\omega_1=(I_2-I_3)\omega_2\omega_3\\
I_2\dot\omega_2=(I_3-I_1)\omega_3\omega_1\\
I_3\dot\omega_3=(I_1-I_2)\omega_1\omega_2
\end{align} $$
Assuming an initial rotation along the axis with ##I_2## and therefore assuming ##\omega_1=\omega_3=0##, we get:

$$\begin{align}
\dot\omega_2=0\quad\Rightarrow\omega_2=\text{const.}\\
\Rightarrow\begin{matrix} \dot\omega_1=\frac{I_2-I_3}{I_1}\omega_2\omega_3=K_1\omega_3\\ \dot\omega_3=\frac {I_1-I_2}{I_3}\omega_1\omega_2=K_3\omega_1\end{matrix}\\ \Rightarrow\begin{matrix}\ddot\omega_1=K_1\dot\omega_3=K_1K_2\omega_1=\lambda\omega_1\\ \ddot\omega_3=K_3\dot\omega_1=K_3K_1\omega_3=\lambda\omega_3\end{matrix}\quad\text{with}\quad K_1K_3>0\\ \Rightarrow\begin{matrix} \omega_1=c_1e^{\sqrt{\lambda}t}+c_2e^{\sqrt{\lambda}t}\\ \omega_3=c_1e^{\sqrt{\lambda}t}+c_2e^{\sqrt{\lambda}t}\end{matrix}
\end{align}$$

which means that the angular velocities on both the first and the third axes tend to exponentially grow with time, until they are large enough to cause rotations, which causes unstability of the intermediate axis
 
Last edited:
Physics news on Phys.org
deuteron said:
TL;DR Summary: What is the physical intuition behind the intermediate axis theorem? Is the rotation about the intermediate axis unstable even under an ideal condition, if yes, physically why?

This video is trying to provide exactly that. To provide an intuitive explanation of it. Or that's the goal as the creator says. I hope it helps.

 
  • Like
Likes   Reactions: Filip Larsen and berkeman
Juanda said:
This video is trying to provide exactly that. To provide an intuitive explanation of it. Or that's the goal as the creator says. I hope it helps.


Thank you! I just watched it, however, here the intermediate axis theorem is derived intuitionally after assuming a small deviation from the axis with the intermediate moment of inertia. What confuses me is whether the rotation would still be unstable if there were no initial deviations from the ##2##nd axis to begin with. Mathematically, I think, yes; but I haven't seen an explanation of the theorem that doesn't assume the initial deviation.
 
deuteron said:
whether the rotation would still be unstable if there were no initial deviations from the 2nd axis to begin with.

It would be metastable, like an idealized pencil standing on its sharpened point.
 
  • Like
Likes   Reactions: vanhees71 and Filip Larsen
deuteron said:
Thank you! I just watched it,
Here is a previous thread on that Veritasium video, where some of its shortcomings are discussed
https://www.physicsforums.com/threads/intermediate-axis-theorem-intuitive-explanation.977692/
Here a continuation with more videos:
https://www.physicsforums.com/threads/intermediate-axis-theorem-intuitive-explanation.1006800/

I liked this one in particular:



deuteron said:
however, here the intermediate axis theorem is derived intuitionally after assuming a small deviation from the axis with the intermediate moment of inertia.
In this context, "instability" means that small deviations get larger.

deuteron said:
What confuses me is whether the rotation would still be unstable if there were no initial deviations from the ##2##nd axis to begin with.
In an idealized case, where it rotates exactly around the 2nd axis, it would not deviate due to symmetry (how would it know which way to deviate).
 
Last edited:
  • Like
  • Informative
Likes   Reactions: Swamp Thing, Juanda and vanhees71
A.T. said:
I liked this one in particular:


That was a nice watch. Thanks for sharing.
Often looking at the same thing from a different perspective helps in understanding it.
Adding just another perspective that could be interesting, here is a video that, instead of using rigid body equations, builds a "rigid" body using point masses and very stiff springs.


Rigid body equations can be really hard (at least for me they are). I think it's easier to grasp spring forces that make the shape of the body almost constant if the springs are stiff enough. Trying to solve such a system would be awful in the past but it's easily achievable for computers and, in my opinion, even simpler to program it into code.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
1K
Replies
13
Views
9K