I Invariance of a tensor of order 2

  • I
  • Thread starter Thread starter Thytanium
  • Start date Start date
  • Tags Tags
    Invariance Tensor
Thytanium
Messages
43
Reaction score
18
TL;DR Summary
In a tensor of order 1 (a vector) its magnitude, direction and sense must remain invariant given a change in coordinates; but in a tensor of order 2, I don't know what remains invariant.
Good morning friends of the Forum. For me it is difficult to geometrically imagine a tensor of order 2 and maybe that is why it is difficult for me to know, what remains invariant when making a change of coordinates of this tensor. The only thing I can think of it, is that since a tensor of order 2 is a tensor product of two vectors (Tensors of order 1), these two vectors remain invariant when changing coordinates and multiplying them tensorly. This I think is implicit in the definition of the order 2 tensor but I am not sure that these assertions I am making are correct. If you can clarify these doubts for me, I would appreciate it, friends of the Forum.
 
Physics news on Phys.org
Thytanium said:
Good morning friends of the Forum.
Good evening!

Thytanium said:
For me it is difficult to geometrically imagine a tensor of order 2 and maybe that is why it is difficult for me to know, what remains invariant when making a change of coordinates of this tensor.
A tensor (including a vector) is a geometrical object. It is invariant by itself, what changes are the tensor components relative to whatever basis you choose to use.

Thytanium said:
The only thing I can think of it, is that since a tensor of order 2 is a tensor product of two vectors (Tensors of order 1), these two vectors remain invariant when changing coordinates and multiplying them tensorly.
More generally, a general tensor of order 2 is a linear combination of such products.
 
Thanks you friend Orodruin. Thanhs you very much.
 
Hello! There is a simple line in the textbook. If ##S## is a manifold, an injectively immersed submanifold ##M## of ##S## is embedded if and only if ##M## is locally closed in ##S##. Recall the definition. M is locally closed if for each point ##x\in M## there open ##U\subset S## such that ##M\cap U## is closed in ##U##. Embedding to injective immesion is simple. The opposite direction is hard. Suppose I have ##N## as source manifold and ##f:N\rightarrow S## is the injective...
Back
Top